
Robin Bergenthum and Ekkart Kindler (Eds.)

Algorithms and Tools for Petri Nets
Proceedings of the Workshop AWPN 2019

Hagen, Germany, October 10–11, 2019
Tagungsband

Fakultät für
Mathematik und
Informatik

FernUniversität in Hagen
Fakultät für Mathematik und Informatik
IZ - Universitätsstraße 1
58097 Hagen, Germany

Contents

Johannes Metzger :
Analyzing and Improving the Efficiency of Current Synthesis
Approaches Using Wrong Continuations 1

Milan Mladoniczky, Gabriel Juhás, Juraj Mažári:
Cluster Inter-Process Communication in Petriflow Language . 10

Sven Willrodt, Daniel Moldt:
Discussion of a Renew Implementation of a Modular Model
Checking Framework for Reference Nets 12

Jacek Chodak, Monika Heiner :
SPIKE – as a Supporting Tool for a Model Parameters
Optimization via Branched Simulations 18

Lisa Mannel, Wil van der Aalst:
Enhanced Discovery of Uniwired Petri Nets Using eST-Miner 24

Ekkart Kindler :
The PNK, the PNML and the ePNK:
What became of our dreams? 26

Juraj Mažári, Gabriel Juhás, Milan Mladoniczky:
Execution of Event Chains in a Petriflow Model 30

Marcel Hansson, Daniel Moldt:
Bericht zur Konsolidierung der Workflow-Modellierung
in Renew . 32

George Assaf, Monika Heiner :
Spatial Encoding of Systems Using Coloured Petri Nets . . . 38

Gabriel Juhás, Juraj Mažári, Milan Mladoniczky, Ana Juhásová:
Implementation Semantics of Petriflow Models 45

iii

Preface

25 years ago, Jörg Desel was the driving force behind the first German
AWPN workshop: "Algorithmen und Werkzeuge für Petrinetze", which is
German for "Algorithms and Tools for Petri Nets". This event turned into
a successful series of workshops, which from the beginning was organized
by the Special Interest Group "Petri nets and related system models" of the
German Gesellschaft für Informatik (GI). The main idea of the workshop is
to focus on discussion! The workshop is informal and low-budget.

This year, the AWPN 2019 took place at the FernUniversität Hagen on
October 10-11 – to the day 25 years after the first AWPN workshop. We are
very happy that Jörg Desel gave an invited talk on the question whether a
single transition can stop an entire Petri net. Furthermore, we had an invited
session dedicated to Jörg Desel on the occasion of his 60th birthday where
Ekkart Kindler, Andreas Oberweis, Gabriel Juhas, Friedrich Steimann, Jetty
Kleijn, Laure Petrucci and Wil van der Aalst reflected on Jörg‘s extensive
work for and contributions to the Petri net community and, more generally,
the modelling community.

The topics of the workshop are analysis, simulation, visualization, and syn-
thesis of Petri nets and related models. Theory, applications, and tools are
welcome and were presented at AWPN 2019. Papers did not undergo a
detailed reviewing process, but were inspected for relevance with respect
to the topics of AWPN 2019. Ten papers were accepted for the workshop.
Overall, the quality of the submitted papers was very good and all submis-
sions matched the workshop goals very well. We thank the authors and the
presenters for their contributions.

Enjoy reading the proceedings!

Robin Bergenthum and Ekkart Kindler
October 2019

v

Analyzing and Improving the Efficiency of Current
Synthesis Approaches Using Wrong Continuations

Johannes Metzger

University of Augsburg, Germany
johannes.metzger@informatik.uni-augsburg.de

Abstract. In this paper, we analyze and improve the so-called synthesis based
modeling approach. Taking a look at the literature, compact regions together with
wrong continuations define the state-of-the-art algorithm to synthesize a Petri net
from a set of executions given by a partial language. Recently, we have lifted
the notion of compact regions from Hasse diagrams to Prime event structures,
making the algorithm even more viable. Still, in the context of structures with
many events (e.g. in Process Mining), the synthesis approach is slow compared
to existing algorithms delivering approximate results.
We aim to further improve the synthesis approach by investigating new ideas
concerning the traversal of the tree of wrong continuations. A concept of so-
called rich continuations is presented.

1 Introduction

Petri nets have an intuitive graphical representation, formal semantics, and are able to
express concurrency among the occurrence of actions [1, 6, 12, 13]. However, modeling
a Petri net form scratch is a costly and error-prone task [1, 11]. The main idea of a syn-
thesis based modeling approach is to input a set of Hasse diagrams and get the related
Petri net model for free using Petri net synthesis. In short, the synthesis problem is to
compute a process model so that: (A) the specification is a subset of the language of
the generated model and (B) the generated model has minimal additional behavior. It is
often easier to come up with a set of Hasse diagrams and synthesize a Petri net than to
produce the Petri net model from scratch.

However, in some areas of interest the synthesis algorithm exposes shortcomings when
compared to other toolkits. For example, in the area of Process Mining, there are a lot
of Process Discovery techniques which are fundamentally faster in model generation
than the synthesis algorithm when used on big sets of data (e.g. [15], [8], [9]).
In recent work, research has been conducted on how to improve the efficiency of the
synthesis approach. Important results of this research include the introduction of com-
pact regions [3–5] and the application of labeled Prime event structures [2, 10], which
both substantially increase the performance of the synthesis algorithm.

In this paper, our goal is to build a foundation for further improvements of the synthesis
approaches using wrong continuations. We introduce the notion of rich continuations
which are helpful in analyzing the efficient traversal of the tree of wrong continuations.

1

The paper is organized as follows: Section 2 introduces Petri nets, the synthesis prob-
lem, and compact regions for labeled Prime event structures. In Section 3, we recall the
concept of wrong continuations. And finally, in Section 4, we discuss ways to order the
set of wrong continuations and introduce the notion of rich continuations.

2 Preliminaries

Let (V,<) be some acyclic and finite graph. We denote the transitive closure of an
acyclic and finite relation < by <∗, and the skeleton of < by <�. The skeleton of < is
the smallest relation / such that /∗ = <∗ holds. (V,<�) is called the Hasse diagram of
(V,<).
Furthermore, we model business processes by p/t-nets [7, 12, 13].

Definition 1 (Place/Transition Net). A place/transition net (p/t-net) is a tuple (P, T,W)
where P is a finite set of places, T is a finite set of transitions such that P ∩ T = ∅
holds, and W : (P × T) ∪ (T × P)→ N is a multiset of arcs. A marking of (P, T,W)
is a multiset m : P → N. Let m0 be a marking, we call the tuple N = (P, T,W,m0) a
marked p/t-net and m0 the initial marking of N .

Petri nets are able to express concurrency of the occurrences of transitions. However,
firing sequences are not able to capture or describe such behavior. Instead, we use state-
of-the-art compact tokenflows [4, 5] as characterization of the partial language of a
Petri net. They are defined on the underlying Hasse diagrams, describing the potentially
concurrent behavior.

Definition 2 (Hasse Diagram). Let T be a set of labels. A labeled partial order is a
triple lpo = (V,<, l) where V is a finite set of events, < ⊆ V × V is a transitive and
irreflexive relation, and the labeling function l : V → T assigns a label to every event.
A triple run = (V,<, l) is a labeled Hasse diagram if (V,<∗, l) is a labeled partial
order and <�=< holds. Let run = (V,<, l) be a labeled Hasse diagram, we define
run∗ = (V,<∗, l).

A Hasse diagram belongs to the language of a Petri net if there are valid compact
tokenflows describing valid distributions of tokens along the arcs of such a diagram for
every place of the net [4, 5].

Definition 3 (Compact Tokenflow). Let N = (P, T,W,m0) be a marked p/t-net and
run = (V,<, l) be a labeled Hasse diagram such that l(V) ⊆ T holds. A compact
tokenflow is a function x : (V ∪ <) → N. x is compact valid for p ∈ P iff the
following conditions hold:

(i) ∀ v ∈ V : x(v) +
∑
v′<v x(v

′, v) ≥W (p, l(v)),
(ii) ∀ v ∈ V :

∑
v<v′ x(v, v

′) ≤ x(v) +∑
v′<v x(v

′, v)−W (p, l(v)) +W (l(v), p),
(iii)

∑
v∈V x(v) ≤ m0(p).

run is compact valid for N iff there is a compact valid tokenflow for every p ∈ P .
The language of a marked p/t-net N is well-defined by the set of compact valid

labeled Hasse diagrams [4, 5]. We write L(N) = {run∗| run is compact valid for N}.

2

As we already pointed out in the introduction, we want to synthesize a p/t-net from
a specification describing the behavior of a system.

Definition 4 (Specification). A finite set of labeled Hasse diagrams is a specification.
Let N be a marked p/t-net and S = {run1, . . . , runn} be a specification. We write
S ⊆ L(N) iff {run∗1, . . . , run∗n} ⊆ L(N) holds.

Finally, we are able to define the synthesis problem. The synthesis problem is to
construct a p/t-net such that its behavior matches a specification. If there is no such
p/t-net, we construct a p/t-net such that its behavior includes the specification and has
minimal additional behavior.

Definition 5 (The Synthesis Problem). Let S be a specification, the synthesis problem
is to compute a marked p/t-net N such that the following conditions hold: S ⊆ L(N)
and for all marked p/t-nets N ′ : L(N)\L(N ′) 6= ∅ =⇒ S 6⊆ L(N ′).

Instead of considering a specification as input for the synthesis problem, we con-
sider a labeled Prime event structure. The main idea is that if Hasse diagrams of a
specification share common prefixes, these prefixes can be glued together to come up
with a more compact representation of the same set of partial orders. To keep track of
the shared and non-shared parts of sets of events of a Prime event structure, every such
structure has a so-called set of consistency sets.

Definition 6 (Labeled Prime Event Structure). Let T be a set of labels. We define a
labeled Prime event structure as tuple pes = (V,<, l, Γ) where (V,<, l) is a labeled
Hasse diagram and Γ = {C1, . . . , Cn} is a set of subsets of V satisfying:

(I)
⋃
C∈Γ C = V and

(II) ∀ C ∈ Γ, v ∈ C, v′ ∈ V : (v′ < v) =⇒ (v′ ∈ C).
Let v, v′ ∈ V be two events, we write v#v′ iff there is noC ∈ Γ so that {v, v′} ⊆ C

holds. Every C ∈ Γ is called a consistency set of pes.

Such a labeled Prime event structure is shown in Figure 1. Each of the colors repre-
sents a different consistency set of the same labeled Prime event structure. For example,
Cred = {1, 3} is a consistency set of the given labeled Prime event structure.

If we model a specification, we can use a Prime event structure instead of a set of
Hasse diagrams. Roughly speaking, every consistency set of a Prime event structure
relates to one Hasse diagram of the specification.

Definition 7 (LPES-Specification). Let pes = (V,<, l, Γ) be a labeled Prime event
structure. Then the set H(pes) = {(C,< |C×C , l|C) | C ∈ Γ} is a set of Hasse
diagrams. We call H(pes) the specification modeled by pes.

Making use of the state-of-the-art theory of compact regions, we apply this theory to the
notion of labeled Prime event structures. First, we need to introduce compact tokenflows
on labeled Prime event structures.

3

Fig. 1. A labeled Prime event structure with four different consistency sets.

Definition 8 (Compact Tokenflow for LPES). Let N = (P, T,W,m0) be a marked
p/t-net and pes = (V,<, l, Γ) be a labeled Prime event structure such that l(V) ⊆ T
holds. A compact tokenflow is a function x : (V ∪ <)→ N.
x is compact valid for p ∈ P iff x|(C ∪<|(C×C)) is compact valid for (C,< |(C×C), l|C)
for all C ∈ Γ . A Prime event structure pes is compact valid forN iff there is a compact
valid tokenflow for every p ∈ P .

Now we are able to define compact regions for labeled Prime event structures.

4

Definition 9 (Compact Region for LPES). Let pes = (V,<, l, Γ) be a labeled Prime
event structure, T be its set of labels, and p be a place. The set of events with an empty
prefix in pes is denoted by Vmin. A function r : (Vmin ∪ <) ∪ (T × {p}) ∪ ({p} ×
T) ∪ {p}) → N is a compact region for pes iff r|(Vmin∪<) is compact valid for p in
({p}, T, r|(T×{p})∪({p}×T), r(p)). p is called the place defined by v.

3 Separation Representation and Wrong Continuations

In this section, we recall the notion of wrong continuations and separation representa-
tions with respect to LPES-based specifications [2].

In the following, we denote by r a compact region as introduced in Def. 9 and
by pr the place defined by r. An idea to get a finite representation, that is a finite set of
regions representing the infinite set of all regions (and thereby a finite set of places in the
resulting Petri net), is to separate behavior specified by lpes from behavior not specified
by lpes by such a finite set of regions (see [14] in the context of partial languages).
The resulting representation is called separation representation. To derive a separation
representation, an appropriate finite set {hd1, . . . , hdn} of Hasse Diagrams with the
following properties is defined:

– The Hasse diagrams hdi are no runs specified by lpes
– Each Hasse diagram hdi extends a run specified by lpes by one event.

Then for each hdi one tries to find a region r such that pr prohibits hdi (that means
hdi is not a run w.r.t. pr). If such a region exists, pr is added to the separation repre-
sentation. The Hasse diagrams hdi are called wrong continuations. The aim is to define
them in such a way that an exact solution of the synthesis problem exists if and only if
each wrong continuation can be prohibited by a place. A solution (N,m0) is an exact
solution, if it does not have runs which are not specified by lpes.

Formally we split a wrong continuation into a prefix belonging to the partial lan-
guage of lpes, a subsequently enabled step of transitions and an additional transition
which should be prohibited.

Definition 10 (Wrong Continuation). Let lpes = (E,Con,≺, l) be a finite LPES over
a finite alphabet of transition names T .

A wrong continuation of lpes is a triple (C, τ, t), where
– C is a left-closed consistency set C of lpes.
– There is a maximal consistency set D of lpes with C ⊆ D, τ ≤ l(SD(C)) and
τ(t) = l(SD(C))(t) (τ may be the empty multiset).

– There is no maximal consistency set D′ of lpes with C ⊆ D′, τ ≤ l(SD′(C)) and
τ(t) < l(SD′(C))(t).
We call hdC the prefix and τ the follower step of the wrong continuation. The set

SD(C) = {v ∈ D \C | w ≺ v =⇒ w ∈ C} is the set of the direct successors of C in
D.

Consider a wrong continuation (C, τ, t). Our aim is to compute a compact region r
such that after the occurrence of the prefix hdC the marking of pr does not enable the
transition step τ + t. This can directly be expressed by a linear constraint using the vari-
ables of the linear inequation system defining compact regions. Then, a non-negative

5

integral solution can be computed which minimizes a given linear target function φ.
More detailed steps on how to apply wrong continuations on labeled Prime event struc-
tures are shown in [2].

4 Analyzing and Improving the Synthesis-based Modeling
Approach

4.1 Determining the Order of Wrong Continuations

In general, a place does not prohibit only one wrong continuation. If a wrong continu-
ation w is prohibited by a place, which was already computed previously, it is not nec-
essary to compute a separate solution for w. Consider two wrong continuations w1, w2.
It is possible that a solution p1 prohibiting w1 also prohibits w2, but that a solution p2
prohibitingw2 does not prohibitw1. In such a case, it is better to considerw1 first, since
this order leads to a net with less places. That means, the order in which wrong con-
tinuations are considered, the so-called wct-ordering, has an influence on the synthesis
result [14].

In previous experiments [2], we considered several different orderings ≤wct based
on the following definitions for wrong continuationsw1 = (C1, τ1, t1),w2 = (C2, τ2, t2):

– w1 <C w2 :⇔ |C1| < |C2| (can be used to consider small prefixes before big
prefixes, or vice versa)

– w1 <dC w2 :⇔ d(C1) < d(C2), where d(C) := max{d(e0, ei) | ei ∈ C} (can be
used to consider short prefixes before long prefixes, or vice versa)

– w1 <τ w2 :⇔ |τ1| < |τ2| (can be used to consider small follower steps before big
follower steps, or vice versa)
These components can be combined in different ways to derive orderings of wrong

continuations for the synthesis algorithm. In our previous experiments [2], we identified
the following wct-ordering as a good choice:

≤wct=<dC ∪(=dC ∩ <C) ∪ (=C ∩ =dC ∩ <τ)
Note that this is a partial order. Unordered wrong continuations are ordered ran-

domly by the algorithm.

4.2 A Theory of Rich Continuations

In order to significantly improve the efficiency of the underlying algorithm, we need to
be able to traverse the tree of prefixes and wrong continuations as efficiently as possible.
As stated in the last section, we aim to efficiently traverse these trees by intelligently
selecting specific paths and continuations first.
Intuitively, a wrong continuation forbidding the addition of a single action t to a given
prefix, also forbids adding more than one t. More sophisticated but still intuitive rules
are [2]:
1. If (C, τ, t) is a wrong continuation and a place p forbids the step τ + t after the

execution of hdC , then p also prohibits each step τ ′ + t after the execution of hdC
for τ ≤ τ ′. In this case, the wrong continuations of the form (C, τ ′, t) need not be
considered.

6

2. For two prefixes hdC and hdC′ with l(C) = l(C ′), there holds: after the execution
of hdC , a step τ + t can be prohibited if and only if it can be prohibited after the
execution of hdC′ . Considering several wrong continuations with such prefixes,
their follower steps can be combined.

Building up on this intuition, we want to differentiate between three types of wrong
continuations: weak, strong, and rich continuations. Beforehand, when studying wrong
continuations, we have to make some assumptions about the chosen synthesis frame-
work:
1. Target Function: Firstly, our definition of weak, strong, and rich continuations will

be dependent on a fixed target function. When discovering patterns inherent to the
structure and composition of wrong continuations, we take the chosen target func-
tion into account and determine the grade of dependency.

2. WCT-Ordering: Secondly, for the purpose of discovering relationships between
wrong continuations, we distinguish between fixed and non-fixed wct-orderings
when examining the set of wrong continuations. While the analysis of fixed or-
derings is relevant when determining a best possible wct-ordering (w.r.t to a given
target function), the analysis of non-fixed orderings allows us (more generally) to
examine the relationship between individual wrong continuations (again, w.r.t. to a
given target function).

Definition 11 (Rich Continuation). Let (C, τ, t) be a wrong continuation of a LPES
lpes = (E,Con,≺, l) and W be the set of all possible wrong continuations of lpes.
(C, τ, t) is called:

– a rich continuation of lpes iff ∀w ∈ W\(C, τ, t) : w does not forbid (C, τ, t) w.r.t
to a given target function φ.

– a strong continuation of lpes iff ∃w, v ∈W\(C, τ, t) :w forbids (C, τ, t)∧(C, τ, t)
forbids v w.r.t to a given target function φ.

– a weak continuation of lpes iff ∀w ∈ W\(C, τ, t) : (C, τ, t) does not forbid w ∧
∃v ∈W : v forbids (C, τ, t) w.r.t to a given target function φ.

We say a wrong continuation w forbids another wrong continuation v iff the place
resulting from forbidding w also prohibits the execution of the wrong continuation v in
the synthesized p/t-net.

Obviously, when traversing the set of all possible wrong continuations, we want to
prioritize on rich continuations and neglect weak continuations. In general, for labeled
Prime event structures with many events, the set of strong continuations is the biggest
set of the given three. This means, we have three goals in mind:
1. Find a strategy to easily determine the set of rich continuations. When calculating

places for the final p/t-net, use these continuations first.
2. Exclude the set of weak continuations from our tree traversal.
3. Determine a best possible ordering for the set of strong continuations.

Assessing the best possible ordering is not easy because it depends on the given labeled
Prime event structure.

Strictly speaking, rich continuations are rare due to their tight definition. In most sce-
narios, we want to relax the definition of rich continuations to better understand the re-
lationship between wrong continuations. Among others, we are evaluating these ideas:

7

1. Analyze the binary relation emerging from the definition of ”forbids” in Def. 11.
For example, we want to evaluate properties like symmetry and transitivity.

2. Relax the definition of rich continuations: define a continuation w with degree
i(i ≥ 0) such that there is no wrong continuation v forbidding w with |w − v| > i
where the distance between two wrong continuations is defined using the ”forbids”
relation. For example, assuming three wrong continuations w, v, u with w forbids
v, v forbids u, and v forbids w, the distance between w and v is 1 whereas the dis-
tance between w and x is 2 if x does not forbid w. Presumably, rich continuations
with a lower degree are of more importance than those with a higher degree.

3. Define place-equivalence on wrong continuations and examine the relation between
place-equivalence and the ”forbids” relation.

Place-equivalence of wrong continuations can be defined on the basis of compact re-
gions which directly relate to places.

Definition 12 (Place-Equivalence). Two wrong continuations are called place-equivalent
when they yield the same place in the resulting p/t-net w.r.t to a given target function φ.

Finally, we have developed an auxiliary tool for visualizing the relationship between
individual wrong continuations.
In Figure 2, each node represents a wrong continuation of the labeled Prime event struc-
ture in the running example of this paper (see Figure 1). Red nodes depict assumed
weak continuations, the blue node, on the other hand, represents an assumed rich con-
tinuation, accordingly. For the rich continuation, a short textual labeling is given which
describes the continuation (i.e. the affiliated prefix P , follower step F , and the ac-
companying wrong event). The depicted graphic only shows those relations between
individual wrong continuations which occurred after a one fixed run of the underlying
synthesis algorithm. Additional relations can easily be added when analyzing the whole
set of wrong continuations independent of the wct-ordering.

Fig. 2. Visualization of wrong continuations for the running example in Figure 1.

8

5 Conclusion

In this paper, we have analyzed bottlenecks of current synthesis approaches using wrong
continuations and suggested a new foundation for improving their efficiency. In prac-
tice, this is especially needed for labeled Prime event structures with a huge number of
events. More concretely, we have introduced a theory of rich continuations as a means
of improving the traversal of the tree of wrong continuations.

In the future, we aim to provide traversal strategies suitable for all use cases, making use
of the relationship between weak, strong, and rich continuations. We plan to further in-
vestigate the binary relation emerging from wrong continuations when considering the
”forbids” definition and compare the properties of this relation to place-equivalence.
Furthermore, we are looking for patterns obtained by investigating the relaxed defini-
tion of rich continuations.

References
[1] van der Aalst, W. M. P.; van Dongen, B. F.: Discovering Petri Nets from Event Logs. ToPNoC

VII, LNCS 7480, Springer, 2013, 372–422.
[2] Lorenz, R.; Metzger, J.; Sorokin, L.: Synthesis of bounded Petri Nets from Prime Event

Structures with Cutting Context using Wrong Continuations. ATAED@ Petri Nets/ACSD.
2017.

[3] Bergenthum, R.: Synthesizing Petri Nets from Hasse Diagrams. Business Process Manage-
ment 2017. LNCS 10445. Springer, 22-39.

[4] Bergenthum, R.; Lorenz, R.: Verification of Scenarios in Petri Nets Using Compact Token-
flows. Fundamenta Informaticae 137, IOS Press, 2015, 117–142.

[5] Bergenthum, R.: Faster Verification of Partially Ordered Runs in Petri Nets Using Compact
Tokenflows. Petri Nets 2013, LNCS 7927, Springer, 2013, 330–348.

[6] Desel, J.; Juhás, G.: ”What is a Petri Net?”. Unifying Petri Nets, Advances in Petri Nets,
LNCS 2128, Springer, 2001, 1–25.

[7] Desel, J.; Reisig, W.: Place/Transition Petri Nets. Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, LNCS 1491, Springer, 1998, 122–173.

[8] Weijters, A. J. M. M.; Ribeiro, J. T. S.: Flexible heuristics miner (FHM). IEEE symposium
on computational intelligence and data mining (CIDM). IEEE, 2011.

[9] Leemans, Sander J. J.; Poppe, E.; Wynn, M. T.: Directly Follows-Based Process Mining:
Exploration & a Case Study. 2019 International Conference on Process Mining (ICPM),
2019.

[10] Bergenthum, R.; Metzger, J.; Sorokin, L.; Lorenz, R.: Towards Compact Regions for La-
beled Prime Event Structures. Algorithms and Tools for Petri Nets, 2017.

[11] Mayr, H. C.; Kop, C.; Esberger, D.: Business Process Modeling and Requirements Model-
ing. ICDS 2007, Computer Society, IEEE, 2007, 8-14.

[12] Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall (Englewood
Cliffs), 1981.

[13] Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case Stud-
ies. Springer, 2013.

[14] Lorenz, R.; Desel, J.; Juhas, G.: Models from scenarios. Transactions on Petri Nets and
Other Models of Concurrency VII Springer Berlin Heidelberg, 2013, 314 – 371.

[15] Liesaputra, V.; Yongchareon, S:; Chaisiri, S.: Efficient process model discovery using max-
imal pattern mining. BPM, 2015, pp. 441456.

9

Cluster Inter-Process Communication in
Petriflow Language

Milan Mladoniczky1,2, Gabriel Juhás1,2,3, and Juraj Mažári1,2

1 Faculty of Electrical Engineering and Information Technology Slovak University of
Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava, Slovakia

2 NETGRIF, s.r.o., Jána Stanislava 28/A, 841 05 Bratislava, Slovakia
3 BIREGAL s. r. o., Klincova 37/B, 821 08 Bratislava, Slovakia

Every Petri net can be described as an event system. The simple act of firing a
transition consists of several events like consuming tokens and producing tokens.
In other words, firing a transition raises an event of a change of marking on the
Petri net or on an instance of the net. Petriflow modelling language[1] takes
advantage of this property of Petri nets and defines means to emit and react
to events. Because Petriflow extends Petri nets by roles and data, the set of
available events is much larger than in classical Petri nets.

In Petriflow, from modelled processes, instances are created to execute pro-
cess business logic. Every process instance is defined by its Petri net marking,
values in data variables, and enabled transitions. In a process instance for every
enabled transition, an object called task is generated. A task express activity,
that is performed by a user of the system or by another deployed process. A task
can be assigned to a user, finished by the user to which was the task previously
assigned to or cancelled to interrupt the execution of and revert all changes made
in the state of task execution.

Petriflow language also defines a construct called Actions[2], which are small
snippets of code attached to an event. A set of actions attached to an event is
considered as the reaction on the event raised on the part of Petriflow process
model. An event can be raised by user interaction with a process, called in an
action or as a consequence of the behaviour of underlying Petri net.

So far processes are considered to run in a local environment only. When
an action of an instance triggers event in another instance of the same process
or another, it is assumed that the instance is run locally and so the event is
executed immediately and in the same application as the instances. However,
the concept of inter-process communication can be elevated to a clustered en-
vironment, where every process could be a separate application (service) in the
cluster. The process event can be called across the whole cluster of application.

To every instance is assigned an identifier, which is unique across the cluster.
It is derived from the instance’s process identifier and the hosting application. A
called event’s target instance is realised by the defined identifier. The instance
identifier helps to quickly determine if an event target instance is local to ap-
plication or not. If the desired instance is found locally the event is invoked
immediately. Otherwise, the event is broadcasted to the cluster.

When an application is added to the cluster, it has to register itself to the
nearest available message broker. The message broker has the responsibility to

10

deliver events to the application hosting the requested process and its instances.
The newly added application request message broker to create a channel (queue)
for every hosted process. The created message queue is bounded to the process
identifier. Message broker routes events according to its process register based on
the process identifier. It can be said, that very deployed process in applications
is a service. A process is event publisher and event consumer at the same time.
By this definition, process identifier must be unique across the whole cluster. If
there is a request to register new process (service) with a duplicate identifier and
it is not from the same application, the request is rejected and the queue for the
process will not be created.

A process has to have prior knowledge of other processes, with which it wants
to communicate, but does not has to know their location in the cluster, because
in a clustered environment the location and availability of an application hosted
processes can often change. When calling an event, it is necessary to request
for the desired instance first. If the instance is not found locally, the search
request is broadcasted to the cluster. The search request is routed according to
the requested process and the request is added to the appropriate event queue
of the process service. When the requested process has the capacity to execute
such a request, it consumes the request from the queue. The message broker
does not have to log every message in the cluster when a message is consumed
it is deleted from the message broker. Logging of incoming requests and events
from the queue is the responsibility of the process.

In practice, if in a monolith architecture is desired to assign a process task,
it can be implemented with an event call assign(T), where T is transition which
will be assigned. If the transition T is not enabled, the event call returns false.
In the clustered environment, the event call is extended by a process identifier
as the event attribute, assign(”Process A”,T).

After the event execution, a response is returned to the caller with informa-
tion about the success of the execution, and additional data if requested.

It is possible to connect more message broker into a more complex network.
In this scenario, each broker is responsible for routing inside its domain. Each
Broker knows the topology of the whole broker network so it can calculate a
path to the target application.

References

1. Mladoniczky, M., Juhás, G., Mažari, J., Gažo, T. and Makáň, M.: Petriflow: Rapid
language for modelling Petri nets with roles and data fields. Proceedings of the
Workshop Algorithms and Tools for Petri nets 2017, October 19-20, 2017, Technical
University of Denmark, Kgs. Lyngby, Denmark, (2017)

2. Mažari, J., Juhás, G., Mladoniczky, M.: Petriflow in Actions:Events Call Actions
Call Events. Proceedings of the Workshop Algorithms and Tools for Petri nets 2018,
October 11-12, 2018, University of Augsburg, Germany, (2018)

11

Discussion of a Renew Implementation of a
Modular Model Checking Framework for

Reference Nets

Sven Willrodt and Daniel Moldt

University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics, http://www.informatik.uni-hamburg.de/

Abstract A first prototype is discussed that approaches the model
checking problem for Reference nets. As the tool environment Renew
(Reference nets Workshop) is used. To serve as a foundation for further
research and experimentation on this problem, the prototype is built
with a modular architecture. This allows quick prototyping, since often
only one module needs to be exchanged to implement a new algorithm.

Keywords: Reference Nets, Nets-In-Nets, Model Checking Framework, Re-
new, Software Architecture

1 Introduction

Verification of Petri nets has a long tradition. While low-level Petri nets have
a large repertoire of methods and tools to cope with even large model sizes
[3, 6, 7, 13, 15, 18, 19], for high-level Petri nets research is still needed. More
tools and links to Petri net topics can be found at http://www.informatik.
uni-hamburg.de/TGI/PetriNets/tools/ and http://www.petrinet.de.

This holds especially for Reference nets with their special features of syn-
chronous channels and the nets-in-nets concept (Nin). Model checking as a sub
discipline can be considered as a strong candidate for Reference nets.

An idea that we work on for quite a while is the partitioning of the whole
Reference net system into its sub nets. Based on the Nin concept partitioning of
the net system shall ease to make model checking methods more efficient.

The reachability graph is a central means for the model checking and will be
addressed first in our approach. Therefore a framework to support the Reference
net formalism and its variants is discussed here. One purpose in the near future
is to use the framework for our theory teaching lessons in the bachelor courses.

In the following we briefly present the basic notions in Section 2. Our re-
quirements for and features of this prototype are covered in Section 3. The ar-
chitecture and some basic behaviour is sketched in Section 4 before we conclude
in Section 5.

12

2 Basics

Reference nets (see [10]) are a high-level Petri net formalism based on the mod-
eling approach of nets-within-nets. They allow the use of net instance tokens and
recognize Java expressions as inscriptions. This causes statements about places
and transitions to be ambiguous during the simulation. Due to the dynamic in-
stantiation of net instance tokens, markings may consist of arbitrary amounts of
net instances of each net template. Templates can be considered as classes and
instances as objects.

Renew is developed by our group since the end of the nineties (see [11]).
However, verification has been addressed only for simple versions of the nets
and only small studies have been performed. Tools like Maria [12], LoLa [20],
GreatSPN [2], Maude [5] and others have been (partially) integrated to provide
verification options for traditional net variants.

Model checking is a method to verify systems that are modeled as state-
transition systems. With their capability to express concurrency and distribu-
tion, Petri nets are a popular modeling language for model checking. [4, 8] Every
year, the Model Checking Contest [9] is held, where tools can compete in veri-
fying Petri nets.

3 Requirements and Features

The framework should provide a general foundation for tasks concerning the
model checking problem for Reference nets. There exists a multitude of optim-
isation techniques, primarily developed for P/T-nets, whose suitabilities for the
Reference net formalism are only partially explored.

Therefore, the main focus for the framework is an extensible structure that
allows easy modification and quick prototyping. This requirement is realized
through a modular architecture, where each module can be exchanged inde-
pendently to alter the behaviour of a model checking routine.

Since in the Reference net formalism net elements cannot uniquely be identi-
fied by name, the framework also needs to provide the means to extend proposi-
tional logic with custom expressions or operators. This makes more sophisticated
specifications possible.

Another natural use case for the framework is teaching, because performance
is less important for the usually smaller examples handed out to students. To be
of use in this category, the user interface is central. Detailed and comprehensible
feedback, important aspects of model checking, should be accessible when using
this framework.

13

4 Architecture

The architecture consists mainly in three types of modules: binding cores, storage
managers and procedures.

The binding core finds bindings for a given marking and can calculate the
resulting markings. It can be set up to exclude certain types of transitions, e.g.
transitions with inscriptions that have side-effects. Exchanging the binding core
is expected to be less frequent, however it is possible to integrate new formalisms
that way. The binding core is generally realized by a special usage of Renew’s
simulator, which is further described in [17].

Storage managers keep track of found markings. They store the reachability
tree, insert new nodes into it and find duplicate markings. By exchanging the
storage manager, it is possible to test new data-structures and storage heuristics.
The sweepline method [3], symmetry [15] and bloomfiltering [20] are examples
for techniques that can be implemented in storage managers.

Procedures carry the logic and steps to process a query. They define what
the overall purpose of the query is and can be considered as the active com-
ponents which utilize all other modules. The generation of a reachability graph,
CTL model checking and model checking with partial order reduction are ex-
amples for procedures. Procedures can also use other procedures, to prevent
basic algorithms from being implemented twice. Optimization techniques, that
want to select which transitions are fired, like the stubborn-set method [18] or a
depth-first search, can be realized in a procedure.

Figure 1 shows an example interaction of the just described modules. It
displays the main interaction points of the binding core as well as the storage
manager. Whenever the procedure processes bindings or nodes, it may remove
some, which are then not carried on to the next step. Because the procedure has
no obligations at all, the interaction may follow an entirely different structure.

Furthermore, the framework provides common functions like parsing and
analysis of syntax trees, as well as the evaluation of atomic propositions on a
marking. For the former, a parser generator is used that features inheritance of
grammars, reducing the amount of duplicate code in grammar files.

Lastly, the framework consists of a UI that has multiple features. It dynam-
ically presents the user compatible modules to a selected procedure. For this,
procedures can define certain compatibility properties. Also, the included result
visualizer takes on the task of presenting results to the user. For this, a data-
structure that represents a result is introduced, that every procedure returns.
Depending on which fields are filled out by the procedure, the result visualizer
can choose an appropriate visualization method. One of the planned methods is
a coloration of the nodes in the reachability graph, representing for each node
whether it fulfills a (sub-)formula or not. This method is compatible with label-
based approaches, e.g. CTL model checking.

14

Figure 1. Example interaction between the procedure, binding core and storage man-
ager

5 Conclusion

The framework provides a foundation for model checking in Renew. While it is
right now not appropriate for industrial sized problems, its purpose is proof of
concept. It also provides a basis to conduct further research on model checking
algorithms designed for Reference nets. With the focus on an extensive and com-
prehensive visual presentation of results, it is well suited for teaching purposes.

Outlook

A promising approach is to use the framework for the Curry Coloured Petri
Net formalism (see [16]), especially future extensions integrating hierarchical
nets and/or Reference net concepts. Since the Curry inscriptions are side-effect
free and can in some cases further be verified by code analysis [1], a complete
verification of the state space potentially becomes possible.

15

As another strong point besides the transfer of algorithms and methods of
traditional Petri net analysis, we address the effective analysis of net models in
two further ways: A central idea is to use the pragmatic structure of the model,
built in by modelers. The nets-within-nets concept supports a kind of object-
or agent-oriented modeling which we will use to partition the models. Secondly,
based on the partitioning we will use the concurrent and distributed execution of
the analysis, for which we can utilize our research on Kubernetes in the context
of Renew [14]. Each net template or the net instances of a net model can be
analyzed in separate threads, processes, virtual machines or computers. Special
treatment of the composition is required by algorithms and methods that still
need to be developed in further research.

References

1. Antoy, S., Hanus, M., Libby, S.: Proving Non-Deterministic Computations in Agda.
In: Proc. of the 24th International Workshop on Functional and (Constraint) Lo-
gic Programming (WFLP 2016). Vol. 234. Electronic Proceedings in Theoretical
Computer Science. Open Publishing Association, 2017, pp. 180–195

2. Baarir, S., Beccuti, M., Cerotti, D., De Pierro, M., Donatelli, S., Franceschinis,
G.: The GreatSPN tool: recent enhancements. ACM SIGMETRICS Performance
Evaluation Review 36(4), 4–9 (2009)

3. Christensen, S., Kristensen, L. M., Mailund, T.: A Sweep-Line Method for State
Space Exploration. In: Tools and Algorithms for the Construction and Analysis of
Systems. Ed. by Margaria, T., Yi, W. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2001, pp. 450–464

4. Clarke Jr., E. M., Grumberg, O., Kroening, D., Peled, D. A., Veith, H.: Model
Checking. third. Cambridge, MA, USA: MIT Press, 2018. isbn: 0-262-03270-8

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart-Oliet, N., Meseguer, J., Talcott,
C.: The maude 2.0 system. In: International Conference on Rewriting Techniques
and Applications. Springer. 2003, pp. 76–87

6. Esparza, J., Heljanko, K.: Unfoldings: a partial-order approach to model checking.
Springer Science & Business Media, 2008

7. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branch-
ing time logic model checking. In: Proceedings Third Israel Symposium on the
Theory of Computing and Systems. 1995, pp. 130–139

8. Girault, C., Valk, R.: Petri nets for systems engineering: a guide to modeling,
verification, and applications. Springer Science & Business Media, 2013

9. Kordon, F., Garavel, H., Hillah, L. M., Hulin-Hubard, F., Amparore, E., Beccuti,
M., Berthomieu, B., Ciardo, G., Dal Zilio, S., Liebke, T., Li, S., Meijer, J., Miner,
A., Srba, J., Thierry-Mieg, Y., Pol, J. van de, Dirk, T. van, Wolf, K.: Complete
Results for the 2019 Edition of the Model Checking Contest. http://mcc.lip6.fr/.
Apr. 2019. (Visited on 2019)

10. Kummer, O.: Referenznetze. Berlin: Logos Verlag, 2002
11. Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L., Haustermann, M., Mos-

teller, D.: Renew – User Guide (Release 2.5). Release 2.5. University of Hamburg,
Faculty of Informatics, Theoretical Foundations Group. Hamburg, June 2016. url:
http://www.renew.de/

16

12. Mäkelä, M.: Maria: Modular reachability analyser for algebraic system nets. In:
International Conference on Application and Theory of Petri Nets. Springer. 2002,
pp. 434–444

13. Pastor, E., Roig, O., Cortadella, J., Badia, R. M.: Petri net analysis using boolean
manipulation. In: Application and Theory of Petri Nets 1994. Ed. by Valette, R.
Springer Berlin Heidelberg, 1994, pp. 416–435. isbn: 978-3-540-48462-2

14. Röwekamp, J. H., Moldt, D.: RenewKube: Reference Net Simulation Scaling with
Renew and Kubernetes. In: Application and Theory of Petri Nets and Concurrency
- 40th International Conference, PETRI NETS 2019, Aachen, Germany, June 23-
28, 2019, Proceedings. Ed. by Donatelli, S., Haar, S. Vol. 11522. Lecture Notes in
Computer Science. Springer, 2019, pp. 69–79. isbn: 978-3-030-21570-5. doi: 10.
1007/978-3-030-21571-2. url: https://doi.org/10.1007/978-3-030-21571-2

15. Schmidt, K.: Symmetries of Petri Nets. Citeseer, 1994
16. Simon, M.: ‘Curry-Coloured Petri Nets: A Concurrent Simulator for Petri Nets with

Purely Functional Logic Program Inscriptions’. Master Thesis. Vogt-Kölln Str. 30,
D-22527 Hamburg, Germany: University of Hamburg, Department of Informatics,
Apr. 2018

17. Simon, M., Moldt, D., Engelhardt, H., Willrodt, S.: A First Prototype for the
Visualization of the Reachability Graph of Reference Nets. In: Petri Nets and
Software Engineering. International Workshop, PNSE’19, Aachen, Germany, June
24, 2019. Proceedings. Ed. by Moldt, D., Kindler, E., Wimmer, M. Vol. 2424. CEUR
Workshop Proceedings. CEUR-WS.org, 2019, pp. 165–166. url: http://CEUR-
WS.org/Vol-2424

18. Valmari, A.: A stubborn attack on state explosion. Formal Methods in System
Design 1(4), 297–322 (Dec. 1992). issn: 1572-8102. url: https://doi.org/10.
1007/BF00709154

19. Wolf, K.: Generating Petri Net State Spaces. In: Petri Nets and Other Models of
Concurrency – ICATPN 2007. Ed. by Kleijn, J., Yakovlev, A. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 29–42. isbn: 978-3-540-73094-1

20. Wolf, K.: Petri Net Model Checking with LoLA 2. In: Application and Theory of
Petri Nets and Concurrency. Ed. by Khomenko, V., Roux, O. H. Cham: Springer
International Publishing, 2018, pp. 351–362. isbn: 978-3-319-91268-4

17

SPIKE – as a Supporting Tool
for a Model Parameters Optimization

via Branched Simulations

Jacek Chodak?, Monika Heiner

Computer Science Institute, Brandenburg University of Technology
Postbox 10 13 44, 03013 Cottbus, Germany

jacek.chodak@b-tu.de, monika.heiner@b-tu.de
http://www-dssz.informatik.tu-cottbus.de

Abstract This paper presents the continuation of work on Spike - a
command line tool for continuous, stochastic & hybrid simulation of (col-
oured) Petri nets (PN). It supports import from and export to various
Petri net data formats and also imports SBML models. Spike’s abilit-
ies includes: the configuration of models by changing arc weights, initial
markings and transitions rates. It also unfolds coloured stochastic/con-
tinuous/hybrid Petri nets. To comply with the demand for reproducible
simulation experiments, Spike builds on a scripting language in a human-
readable format. Its core features permits the design of a set of simulation
experiments by a single configuration file. These simulation experiments
can be executed in parallel, on a multi-core machine; distributed execu-
tion is in preparation. By utilizing Spike’s feature which allows scanning
of parameters , Spike can serve as the supporting tool of model paramet-
ers optimization.

Keywords: continuous, stochastic, hybrid, coloured (hierarchical) Petri
nets · simulation · configuration · reproducibility · parameters optimiza-
tion

1 Objectives

Parameters optimization of biochemical reaction networks, for which we use Petri
nets as an umbrella modelling paradigm, is a problem. During development of
a model, frequently not all parameters are known and only a data from wet-lab
experiments are available. To estimate not know values of a model parameters it
is necessary to run a set of simulation experiments and compare acquired results
against a wet-lab data. The size of the simulation set can be very large and
depends on parameters set size e.g. 5 parameters with a value range of size 10,
the size of simulations set is equal to 105. Doing this manually, by preparing a
new simulation run for each new model configuration, is time consuming and
potentially error-prone.

? Corresponding author

18

One of the ways to address these issues is utilizing Spike, which is builds on
a human-readable configuration script, supporting the efficient specification of
multiple model configurations as well as multiple simulator configurations in a
single file. Each specific model and simulator configuration determines a specific
simulation experiment, for which Spike creates a separate branch, ready to be
executed on a server, with all branches treated as parallel processes.

2 Functionality

As presented in [3,2], Spike is a slim, but powerful brother of Snoopy [6] - it is
the latest addition to the PetriNuts family of tools for modelling, analysis and
simulation with Petri nets, specifically tailored to the investigation of biochemical
reaction networks.

Depending on the configuration, Spike is capable to run three basic types
of simulations: stochastic, continuous and hybrid, each comes with several al-
gorithms. Simulation of coloured stochastic, continuous and hybrid PN models
is supported by unfolding them automatically to uncoloured models.

A given model is simulated according to the specified simulation type, despite
place and transition types in the model. That means all places and transitions
are converted to the appropriate type. For example, if a user wants to run a
stochastic simulation on a continuous model, all places and transitions are con-
verted to the stochastic type. Likewise, for stochastic models to be simulated
continuously, all stochastic transitions are converted to continuous type.

The main focus of Spike lays on efficient and reproducible simulation of PN
models. New features allow for configuring simulation over a set of parameters
(parameters scanning) and runs simulation task parallel.

Branching During configuration evaluation, it can be split into separate branches.
Branching process is triggered by defining in the configuration, a set of paramet-
ers to scan. The set of values is assigned to the configuration parameter. For each
value in the set, a new configuration branch is created. Such a feature allows for
mutating configuration script, what results in multiple simulation configuration.

Let’s consider the following use case, the diffusion model presented in Fig. 1.
Over this model, constant D has been defined. With the help of this constant,
it is possible to set the size of the diffusion grid. With the help of the parameter
scanning introduced in Spike, it is possible to reuse the same model and through
the configuration script, set the range of values to scan for the constant D, e.g.:

19

P
1000‘(M,M)

Grid2D

t3

[[IsNeighbor2D4(x,y,a,b)]]

(x,y)(a,b)

(a)

P_1_1

P_1_2

P_1_3

P_2_1 P_2_2

1,000

P_2_3

P_3_1

P_3_2

P_3_3

t3_1_1_1_2

t3_1_1_2_1

t3_1_2_1_1 t3_1_2_1_3

t3_1_2_2_2

t3_1_3_1_2

t3_1_3_2_3t3_2_1_1_1

t3_2_1_2_2

t3_2_1_3_1

t3_2_2_1_2

t3_2_2_2_1

t3_2_2_2_3

t3_2_2_3_2

t3_2_3_1_3

t3_2_3_2_2

t3_2_3_3_3t3_3_1_2_1

t3_3_1_3_2

t3_3_2_2_2

t3_3_2_3_1

t3_3_2_3_3

t3_3_3_2_3

t3_3_3_3_2

(b)

Figure 1: Coloured (a) and unfolded (b) model of diffusion 2D4.

cons tant s : {
a l l : {

D: [3 , 5 , 7] ;
}

}
By using the array operator [], the set of 3 values is assigned to the constant

D. The number of branches depends on the size of the set. For each value in the
set, Spike creates a new branch of configuration script. In this case, Spike will
split the configuration and create 3 branches

Simulation The set of configuration branches can be executed sequentially or
parallel. Each branch is executed as a separated process of Spike. During the
simulation, Spike crate 2 types of processes. One so-called master process and
one or more slaves processes.

The master process act as a broker and owner of the simulation experiment.
It takes care of creating slave processes on a local machine. The slave process
is responsible for executing exactly one branch of the simulation configuration.
The number of slave processes running parallel is depended on an option passed
to Spike. If only one slave process is allowed then each simulation branch, will
be executed sequentially. In this case, the master process will wait for the end
of execution of one of the branches before starting execution of the next one.
Otherwise, the master process will start slave processes at most in the number
specified by Spike’s option. If the number of the branches exceeds the number
of the slave processes, the master process will postpone starting new one until
one of currently running processes will finish its task. Starting the slave process
by Spike does not mean that the number of the running threads is equal to
the number of processes. The number of threads may depend on the applied
simulation algorithm. For example, a stochastic simulation may involve multi-
threading to execute in parallel the independent individual runs, which are later
averaged.

20

3 Optimization through Simulation

Optimization through simulation can be used as a search method [7] of best
candidates of input variables among all valid alternatives at any system state.
By adopting heuristic evaluation it is possible to reduce search space without
explicitly evaluating each possibility. Newly introduced features to Spike, such
as parameters scanning and parallel execution of configuration branches, make
it more suitable for this task. In the following two scenarios of parameters op-
timization, Spike fits well as a universal simulator.

Figure 2: Optimization through simulation

Brute force This straight forward approach, where for each combination of
parameters a new simulation is executed. Thanks to introducing it into the
Spike, branching of simulation (parameters scanning) can be easily done, by use
of one experiment configuration. After the execution of all possible simulations,
the best matching results should be selected by the use of fitness function, which
tells how good results are. This approach is presented by Algorithm 1 .

Algorithm 1: Use case: Brute force multiple parameter optimisation.

1 Load model;
2 Determine simulator configuration;
3 for each unique combination of parameter values do
4 Determine model configuration;
5 Create new configuration branch;
6 Run simulation;
7 Save results of the simulation;

8 end
9 for each stored results do

10 if results not fitted then
11 Remove results;
12 end

13 end

21

Heuristic Brute force approach does not reduce the search space of parameters
values. For each combination of parameters a new simulation is executed, what
is exhausting time and resources. A heuristic method is much better suitable,
where a number of parameters and/or their values ranges are too large, what
prevents them to be optimized in a finite time. In [5] genetic algorithm is used
to drive the optimization strategy of models parameters. The DIRECT method
and its derivatives [1], as presented in [4], also suite well as optimization strategy
in the use case presented by Algorithm 2. As shown in Fig. 2, an optimization
strategy use results from simulation to reduce the space of parameters values
by checking the fitness of set of parameters and provide a set of best fitted
parameters values as feedback to the model.

Algorithm 2: Use case: Space reduction multiple parameter optimisation.

1 Load model;
2 Determine simulator configuration;
3 repeat
4 for each unique combination of parameter values do
5 Determine model configuration;
6 Create new configuration branch;
7 Run simulation;

8 end
9 Run optimization strategy;

10 until space reduced ;

4 Remarks

This paper presents the idea of using Spike as a tool supporting parameter
optimization. Currently, there is undergoing work on Spike’s API (Application
Programming Interface), which allows Spike act as a service for simulation exe-
cution. In the future, the presented idea will make full use of it.

5 Installation and future work

Spike is written in C++ and available for Linux, Mac/OSX and Windows. Bin-
aries are statically linked and can be downloaded from Spike’s website https://
www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Spike, where one also
finds documentation, installation instruction and a set of examples.

Spike is still under development. Future work will incorporate sophisticated
model reduction, model decomposition, and distributed simulation, either for a
set of simulations or a decomposed model. We are open for further suggestions.

22

Acknowledgement

Spike uses software libraries (data format conversions, simulation algorithms)
which have been previously developed by former staff members and numerous
student projects at Brandenburg Technical University (BTU), chair Data Struc-
tures and Software Dependability.

References

1. D. R. Jones, C. D. Perttunen, B. E. Stuckman : Lipschitzian optimization without
the Lipschitz constant . Journal of optimization Theory and Applications 79(1),
157–181 (1993)

2. J. Chodak, M. Heiner : Spike - a command line tool for continuous, stochastic &
hybrid simulation of (coloured) Petri nets. In: Proc. 21th German Workshop on
Algorithms and Tools for Petri Nets (AWPN 2018), pp. 1–6. University of Augsburg
(October 2018), https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/

deliver/index/docId/41861/file/awpn18-lorenz-metzger-OPUS.pdf#page=9

3. J. Chodak, M. Heiner : Spike Reproducible Simulation Experiments
with Configuration File Branching . In: LNBI 11773, Springer (2019).
https://doi.org/10.1007/978-3-030-31304-3 19

4. J.D. Griffin, T.G. Kolda : Asynchronous parallel hybrid optimization combining
DIRECT and GSS . Optimization Methods and Software 25(5), 797–817 (2010).
https://doi.org/10.1080/10556780903039893

5. R. Donaldson, D. Gilbert : A Model Checking Approach to the Parameter Estim-
ation of Biochemical Pathways . In: M. Heiner . A.M. Uhrmacher (ed.) Compu-
tational Methods in Systems Biology . pp. 269–287. Springer Berlin Heidelberg ,
Berlin, Heidelberg (2008)

6. M. Heiner, M. Herajy, F. Liu, C. Rohr, M. Schwarick: Snoopy – A Unifying Petri
Net Tool. In: ATPN 2012. pp. 398–407. Springer, LNCS 7347 (2012)

7. Y. Carson, A. Maria : Simulation optimization: methods and applications. In: Pro-
ceedings of the 29th conference on Winter simulation. pp. 118–126. IEEE Computer
Society (1997)

23

Enhanced Discovery of Uniwired Petri Nets
Using eST-Miner

Lisa L. Mannel(�) and Wil M. P. van der Aalst

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany,
mannel@pads.rwth-aachen.de; wvdaalst@pads.rwth-aachen.de

More and more processes executed in companies are supported by informa-
tion systems which record events. Extracting events related to a process results
in an event log. Each event in such a log has a name identifying the executed
activity (activity name), a case id specifying the respective instance of the pro-
cess, a time when the event was observed (timestamp), and possibly other data
related to the activity and/or process instance. In process discovery, a process
model is constructed aiming to reflect the behavior defined by the given event log:
the observed events are put into relation to each other, preconditions, choices,
concurrency, etc. are discovered, and brought together in a process model.

Process discovery is non-trivial for a variety of reasons. The behavior recorded
in an event log cannot be assumed to be complete, since behavior allowed by the
process specification might simply not have happened yet. Additionally, real-life
event logs often contain noise, and finding a balance between filtering this out
and at the same time keeping all desired information is often a non-trivial task.
Ideally, a discovered model should be able to produce the behavior contained
within the event log, not allow for unobserved behavior, represent all dependen-
cies between the events, and at the same time be simple enough to be understood
by a human interpreter. It is rarely possible to fulfill all these requirements si-
multaneously. Based on the capabilities and focus of the used algorithm, the
discovered models can vary greatly, and different trade-offs are possible.

Our discovery algorithm eST-Miner [1] aims to combine the capability of
finding complex control-flow structures like longterm-dependencies with an in-
herent ability to handle low-frequent behavior while exploiting the token-game
to increase efficiency. Similar to region-based algorithms, the basic idea is to
evaluate all possible places to discover a set of fitting ones. Efficiency is signifi-
cantly increased by skipping uninteresting sections of the search space based on
previous results [2]. This may decrease computation time immensely compared
to evaluating every single candidate place, while still providing guarantees with
regard to fitness and precision. Implicit places are removed in a post-processing
step to simplify the model.

In [3] we introduce the subclass of uniwired Petri nets as well as a variant
of eST-Miner discovering such nets. In uniwired Petri nets all pairs of transi-
tions are connected by at most one place, i.e. there is no pair of transitions
(a1, a2) such that there is more than one place with an incoming arc from a1
and an outgoing arc to a2. Still being able to model long-term dependencies,
these Petri nets provide a well-balanced trade-off between simplicity and expres-
siveness, and thus introduce a very interesting representational bias to process

24

discovery. Constraining ourselves to uniwired Petri nets allows for a massive
decrease in computation time compared to the basic algorithm by utilizing the
uniwiredness-requirement to skip an astonishingly large part of the search space.
Additionally, the number of returned implicit places, and thus the complexity of
post-processing, is greatly reduced.

For details we refer the reader to the original papers [1,3]. The basic eST-
Miner, as well as the uniwired variant, take an event log and user-definable
parameter τ as input. Inspired by language-based regions, the basic strategy of
the approach is to begin with a Petri net, whose transitions correspond exactly to
the activities used in the given log. From the finite set of unmarked, intermediate
places a subset of fitting places is inserted. A place is considered fitting, if at
least a fraction of τ traces in the event log is fitting, thus allowing for local
noise-filtering. To increase efficiency, the candidate space is organized as a set of
trees, where uninteresting subtrees can be cut off during traversal, significantly
increasing time and space efficiency.

While the basic algorithm maximizes precision by guaranteeing to traverse
and discover all possible fitting places, the uniwired variant chooses the most
interesting places out of a selection of fitting candidates wiring the same pair of
transitions. Subtrees containing only places that wire the same pair of transitions
can be cut off. The output Petri net is no longer unique but highly dependent
on the traversal and selection strategy. The approach presented in [3] prioritizes
places with few arcs. Between places with the same number of arcs, places with
high token-throughput are preferred. This strategy often allows us to discover
adequate models, but fails in the presence of long loops which require places with
more arcs. To overcome this restriction, we propose to use a reversed strategy,
prioritizing places with high token throughput and using the number of arcs as
a second criteria. This might slightly decrease the fraction of cut-off candidates
but is expected to greatly increase model quality.

The running time of the eST-Miner variants strongly depends on the number
of candidate places skipable during the search for fitting places. For the basic ap-
proach ([1]) our experiments show that 40-90 % of candidate places are skipped,
depending on the log. The uniwired variant ([3]) has proven to find usable models
while evaluating less than 1 % of the candidate space in all test-cases.

References

1. Mannel, L., van der Aalst, W.: Finding complex process-structures by exploiting the
token-game. In: Application and Theory of Petri Nets and Concurrency. Springer
Nature Switzerland AG (2019)

2. van der Aalst, W.: Discovering the ”glue” connecting activities - exploiting mono-
tonicity to learn places faster. In: It’s All About Coordination - Essays to Celebrate
the Lifelong Scientific Achievements of Farhad Arbab (2018)

3. Mannel, L., van der Aalst, W.: Finding uniwired Petri nets using eST-miner. In:
Business Process Intelligence Workshop 2019. Springer (to be published)

25

The PNK, the PNML and the ePNK:
What became of our dreams?

Extended Abstract

Ekkart Kindler

DTU Compute, Technical University of Denmark
Kgs. Lyngby, Denmark

ekki@dtu.dk

1 Introduction

In Wolfgang Reisig’s group at the Technische Universität München and later at
Humboldt Universität zu Berlin, we were strictly forbidden “to waste our time on
developing tools for Petri nets” for a long time. Then, in 1997, Wolfgang Reisig
was on a sabbatical at the International Computer Science Institute (ICSI),
Berkeley, California, where he, after his presentations and talks, was repeatedly
asked a simple question: “do you have a tool for this?” After he returned from
this sabbatical, Wolfgang changed his tune and requested: “Ekkart! We need a
tool!”

Luckily, some of his group had been disobedient before and had started think-
ing of and developing a tool for Petri nets already. In particular, Jörg Desel and I
had started dreaming of a universal tool for Petri nets already and had come up
with a name for it: the Petri Net Kernel1 (PNK) [1]. Based on this dream, dif-
ferent versions and extensions of the PNK have been implemented over the years
[2–5]. And, as a sideline, the concepts of the PNK strongly influenced the Petri
Net Markup Language (PNML) [6] – even though one of the main motivations
behind our original dream was to get away from the never ending discussions on
file formats for exchanging Petri nets.

Now, many years have gone by and several recent anniversaries and retro-
spectives concerning people and events within the Petri net community inspired
me to have a look back at the original dream of a universal Petri net tool [1]
and to see to which extend today’s ePNK [5] actually fulfills the original dream.
This paper and the related talk are a first attempt of discussing and structuring
some of these insights, and of relating our original motivations and expectations
to the actual result in a very loose and informal way – starting with only a few
of the original ideas [1].

1 Originally, it was in German Petrinetz-Kern, which we later translated to Petri Net
Kernel.

26

2 What became of the ideas?

When we started dreaming of a universal Petri net tool, there was actually a
discussion on exchange formats for Petri nets going on. The most promising
proposal at the time was the Abstract Petri Net Notation (APNN) [7]; still, the
discussion did not seem to converge. Therefore, we explicitly did not aim for a
Petri net exchange format, but for an API2 for creating, querying and updating
Petri nets. We were well aware that a unified API for Petri nets might be even
more ambitious than a unified exchange format. But, we believed that an API for
Petri nets might contribute more to the understanding of how to unify Petri nets
from an algorithms and tools perspective. Cautiously, we even added that we
would consider the Petri Net Kernel (PNK) a success even in case its reference
implementation did not survive. We claimed that the PNK would be a success
already if it contributed to a better understanding of the needed API.

The main idea for making the PNK universal was to identify the common
structure of all Petri nets, which included places, transition and arcs, and even
structuring mechanisms like pages. All the features that where specific to certain
types of Petri nets where supposed to be captured in additional inscriptions or
labels attached to the common Petri net elements. Later, we called the set of
allowed inscriptions of a certain version of Petri net a Petri net type definition
(PNTD).

This way, the PNK could be understood as a universal data model for Petri
nets. And the PNTDs allowed to define the specific (abstract) syntax of all
kinds of Petri nets. In the beginnings of the PNK, we also meant to capture
the semantics of the different types of Petri nets, and there have been different
academic attempts to implement the semantics of a Petri net type and plug
them into the PNK. But, this idea never really took off and is not part of
today’s ePNK.

The API or, if you will, the data model of the PNK and its concepts of
PNTDs came in handy when – as part of standardizing high-level Petri nets [8]
– a generic interchange format for all kinds of Petri nets was standardized: the
PNML [6]. The PNML core model is the essence distilled from the PNK API
turned into a UML class diagram. And it is maybe a bit ironic that a move
to avoid the discussion on standard exchange formats for Petri nets, eventually,
contributed to them anyway.

Making the PNML core model into a UML-model might eventually have
contributed to the second generation ePNK [4], since the ePNK was developed in
a model-based way using the Eclipse Modeling Framework (EMF) [9]. Actually,
the PNML Framework [10] had adopted this approach before. But, since the
PNML Framework did not come with a graphical user interface and did not
have a mechanism for dynamically plugging in new PNTDs and applications, I
decided to implement the ePNK as new version of the PNK based on EMF. And
maybe this move guaranteed the survival of the ePNK not only in its concept but

2 In the paper [1], we did not use the word API, though. We used the German word
“Schnittstelle”.

27

as software; actually it brought us closer to the original dream: Whereas most of
the programming effort in the first generation PNK went into infrastructure like
graphical user interfaces, editors, parsers and our own plug-in architecture, in the
second generation ePNK, all these things could be taken from Eclipse and EMF.
So, we could focus on the core functionality of Petri nets when implementing,
extending and maintaining the ePNK. And this is very much what the initial
dream of the PNK was about.

When looking back, I realized that there was one idea in our original paper [1]
that the PNK, the PNML and, as a consequence, also the ePNK had lost track of:
Originally, the PNK had the idea that everything should be a graph, and graphs
were supposed to be at the core of the PNK. In the different implementations,
however, and, in particular, in the graphical editor and the generic infrastructure
of the ePNK, this was not properly taken care of: This editor and the underlying
infrastructure assume that there are two3 types of nodes: places and transitions.
And this choice makes it a bit artificial defining Petri net types with more than
two “dominant” types of nodes in the ePNK. Here, I actually regret not having
read our original paper again before reimplementing the ePNK. I could have
made the ePNK graph-based, basically, without any extra effort, but starting
from the PNML core model, which did not have graphs at its basis, I had just
forgotten about that.

3 Conclusion

After now almost 25 years, we can say that at least some parts of the dream
of a universal Petri net tool have became true, and its ideas and concepts have
contributed to a better understanding of how to unify Petri net tools. Even more,
they have contributed to standardizing an exchange format for Petri nets, which
expressly was not part of the dream at all.

Reading the paper again even reminded me of other ideas and lessons, which
would be worth a more detailed discussion. I hope that, at some point, I will
find the time to discuss and share them, too.

References

1. Kindler, E., Desel, J.: Der Traum von einem universellen Petrinetz-Werkzeug —
Der Petrinetz-Kern. In Desel, J., Oberweis, A., Kindler, E., eds.: 3. Workshop
Algorithmen und Werkzeuge für Petrinetze. Number 341 in Forschungsberichte,
Institut AIFB, Universität Karlsruhe (1996)

2. Kindler, E., Weber, M.: The Petri Net Kernel: An infrastructure for building Petri
net tools. In: Petri Nets ´99, 20th International Conference on Application and
Theory of Petri Nets: Petri Net Tool Presentations. (1999) 10–19

3. Weber, M., Kindler, E.: The Petri Net Kernel. In Ehrig, H., Reisig, W., Rozenberg,
G., Weber, H., eds.: Petri Net Technologies for Modeling Communication Based
Systems. Volume 2472 of LNCS. Springer (2003) 109–123

3 Ignoring for a moment that pages, technically, are also represented as nodes in the
ePNK.

28

4. Kindler, E.: The ePNK: An extensible Petri net tool for PNML. In: Applications
and Theory of Petri Nets - 32nd International Conference, Proceedings. Volume
6709 of LNCS., Springer (2011) 318–327

5. Kindler, E.: ePNK applications and annotations: A simulator for YAWL nets. In
Khomenko, V., Roux, O.H., eds.: Application and Theory of Petri Nets and Con-
currency - 39th International Conference, PETRI NETS 2018, Bratislava, Slovakia,
June 24-29, 2018, Proceedings. Volume 10877 of LNCS., Springer (2018) 339–350

6. ISO/IEC: Systems and software engineering – High-level Petri nets – Part 2:
Transfer format, International Standard ISO/IEC 15909-2:2011 (2011)

7. Bause, F., Kemper, P., Kritzinger, P.: Abstract Petri net notation. Petri Net
Newsletter 49 (1995) 9–27

8. ISO/IEC: Software and Systems Engineering – High-level Petri Nets, Part 1:
Concepts, Definitions and Graphical Notation, International Standard ISO/IEC
15909 (2004)

9. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. 2nd edn. The Eclipse Series. Addison-Wesley (2006)

10. Hillah, L.M., Kordon, F., Petrucci, L., Trèves, N.: PNML Framework: An extend-
able reference implementation of the Petri Net Markup Language. In Lilius, J.,
Penczek, W., eds.: Petri Nets. Volume 6128 of Lecture Notes in Computer Science.,
Springer (2010) 318–327

29

Execution of Event Chains in a Petriflow Model

Juraj Mažári1,2, Gabriel Juhás1,2,3, and Milan Mladoniczky1,2

1 Faculty of Electrical Engineering and Information Technology, Slovak University of
Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava, Slovakia,

2 NETGRIF, s.r.o., Jána Stanislava 28/A, 841 05 Bratislava, Slovakia
3 BIREGAL s. r. o., Klincova 37/B, 821 08 Bratislava, Slovakia

In [1] and [2] we introduced synchronisation between instances of complex
business processes using Petriflow language. This technique brings questions
about parallelism and deadlocks in such models and implementations of Pet-
riflow syntax. In the following, we explain the mechanics of our implementation
in simple use cases.

In Petriflow we have defined actions as a small pieces of code. They can be
used to change data variable values, call web-services, create new cases or call
events on other cases. Actions call also be triggered by those events. Actions
triggered before the task event are called pre-actions. Post-actions are triggered
after the task event is executed. Together with the event they are executed
atomically and form an event chain. Execution of an event chain works as follows:
first, we check if the event can occur, then we execute all pre-actions, then
the event itself and finally we execute all post-actions. If an exception occurs
during the execution of any event chain step the whole execution is stopped.
No steps executed prior to the failure are reverted so there is no automatic
transaction mechanism. Whether the execution should be reverted or there will
be any reaction to the failure is up to the modeller and his decision.

In general, there can by any finite number of threads executing events on
a single case. Using multiple thread executors brings problem with conflicting
executions. If one thread executor is assigning a task no other thread can execute
event chain that would disable the task.

For the sake of simplicity our implementation uses one single thread executor
for each process instance. This way all atomic events are executed sequentially.
Requesting multiple events in the same case puts them into a queue of that case
event executor. The executor then pulls events one by one from the queue to
be executed in the same order they were added in. During the execution of one
event, the event executor is blocked by that execution and no other events can
be executed. This brings two concerns: deadlocks and parallelism.

For example deadlock will occur when pre-assign action of a task t1 in case
A requests a task t2 in case B to be assigned and pre-assign action of task t2
requests assign of task t3 in case A. First the system puts the request assign(t1)
in the queue of executor A. Executor A pulls the request from its queue and
start the execution of its pre-actions. One of the pre-actions requests assign(t2)
in case B. This request is put in the queue of executor B and executor A waits
for the response from executor B. Executor A is now blocked by the request
assign(t2). Executor B pulls the request from its queue and start the execution
of its pre-actions. Again one of the pre-actions requests assign(t3) in case A.

30

The request is put in the queue if executor A and executor B is now blocked
and waiting for this request to be executed. Since executor A is still blocked
and waiting for the assign(t2) to be finished by executor B it will not execute
assign(t3) and cause a deadlock.

To solve this problem we allow the action to create sub-chain and all related
events and actions will be executed by this sub-chains executor without being
put in the executor’s queue. In our case request assign(t3) will be executed in
such sub-chain. Task t3 will be assigned. Executor B will receive the response of
calling assign(t3) and continue with the execution of assign(t2). After finishing
the execution executor B will send the response to the executor A which will
then continue with the execution of assign(t1). In this execution of event chain
using sub-chains, no deadlock will occur.

In our implementation task parallelism is preserved. Each task takes some
time to execute. This is the time between the assign() event and the finish() event
of a task. For two parallel tasks t1 and t2 events can occur in order assign(t1),
assign(t2), finish(t1) and finish(t2). From the timeline of these events, it is clear
that they were executed in parallel. If we use actions to synchronise these two
tasks we can ensure that the same state is reached as if all events were executed
at the same time. When the assign(t1)-assign(t2)-finish(t1)-finish(t2) chain is
executed the executor is blocked and no other event chain will be executed until
its finished. Since no other events could be executed between events assign(t1)
and finish(t2) no intermediate state is actually reached and persisted in the
database.

When synchronising multiple tasks in different cases we have no guarantee
that all will be executed successfully. Even if we in one action check if all tasks
can be executed we have to make sure that nothing will be executed in those
cases that will cause the task to be inexecutable. With sub-chains, we can do just
that. Creating sub-chain in cases will block their executors. Now it is impossible
for anyone else to execute any event chains in those cases. In other words, we
make sure that between the check and the execution of the task no other event
will be executed in the given case. If all checks will return true all tasks will be
successfully synchronised.

Reactive programming could improve the performance of our implementation
in the future. Creating thread executor for each sub-chain can potentially lead to
exceeding the maximum number of processes allowed by the operating system.
Since reactive programming allows to use non-blocking operations new thread
executors would not be necessary and sub-chain events could be executed by the
cases executor.

References

1. Mažári, J., Juhás, G., Mladoniczky, M.: Petriflow in actions: Events call actions call
events. Algorithms and Tools for Petri Nets pp. 21–26 (2018)

2. Mladoniczky, M., Juhás, G., Mažári, J.: Process communication in petriflow: A case
study. Algorithms and Tools for Petri Nets pp. 27–32 (2018)

31

Bericht zur Konsolidierung der
Workflow-Modellierung in Renew

Marcel Hansson und Daniel Moldt

University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics, http://www.informatik.uni-hamburg.de

Zusammenfassung. Prozesse und deren Modellierung lassen sich sehr
gut mit (höheren) Petrinetzen und anderen Formalismen darstellen. Die
graphische Darstellung der Zusammenhänge von einzelnen Aktionen, Er-
eignissen und den teilweise eingesetzten Artefakten fällt oft leicht. Seit
dem Beginn der Entwicklung des Werkzeugs Renew wurden daher Pro-
zesse und Modellierungstechniken immer wieder in ihren vielen Varianten
unterstützt. Nach mehr als zwei Jahrzehnten Entwicklung stellt sich die
Frage nach einer geeigneten Konsolidierung der vorhandenen Software.
Dazu liefert dieser Beitrag einen Zwischenbericht, bei dem Fragen zum
Anwendungsbereich und zur unterstützenden Software behandelt wer-
den.

Schlüsselwörter: Workflow-Modellierung, Renew, höhere Petrinetze, Refe-
renznetze, Softwarearchitektur

Einleitung

Prozessmodellierung ist ein wichtiger Bereich der Modellierung in der Informa-
tik. Dafür werden zahlreiche Modellierungstechniken für Geschäftsprozesse und
Arbeitsabläufe eingesetzt, wie z.B. Workflownetze [25], erweiterte ereignisgesteu-
erte Prozessketten (eEPKs) [19], Aktivitätsdiagramme der UML [14] oder Busi-
ness Process Model and Notation (BPMN) [11]. Mit dem Reference net workshop
Werkzeug (Renew) [16] lassen sich Petrinetze modellieren und simulieren. Zu-
dem wurden für Renew zahlreiche Plugins entwickelt, die es ermöglichen zum
einen Modelle in anderen Modellierungstechniken zu erstellen und zum anderen
auch mit Hilfe von Referenznetzen auszuführen. Weiterhin existieren Analyse-
verfahren und -werkzeuge, die entweder innerhalb von Renew für Lehrzwecke
integriert wurden oder als externes Tool mittels einer Exportfunktion verwendet
werden können.

Einzelne Lösungen/Implementierungen und Plugins sind bereits bis zu zwei
Jahrzehnte alt und bedürfen teilweise einer Überholung sowohl bzgl. der Anwen-
dung als auch der Softwareimplementation. Einige sind aufgrund der kontinu-
ierlichen Weiterentwicklung von Java und/oder Renew nicht mehr voll funkti-
onsfähig oder lassen sich nicht (einfach) miteinander kombinieren.

32

Mit diesem Beitrag wird berichtet, wie die bisher entwickelten Plugins, die
in Hinblick auf Workflow-Modellierung, -Simulation und -Analyse entwickelt
wurden, dokumentiert und mittels einer homogenisierten Umgebung verbessert
und zueinander kompatibel gemacht werden können. Dabei dient die Plugin-
Architektur von Renew als Grundlage für eine Konsolidierung. Das Schichten-
und Modulkonzept von Java als zentrale Implementierungssprache zur Unter-
stützung dieser Bearbeitungen wird kurz diskutiert. Als langfristiges Ziel soll für
Renew die Modellierung, Simulation und Analyse von Workflows und Prozessen
mittels interner und externer Werkzeuge bestmöglich unterstützt werden. Die-
ser Beitrag konzentriert sich dabei vorwiegend auf Workflownetze (siehe [25]) in
Verbindung mit dem Werkzeug Renew, welches sich zur Modellierung, Analyse
und Simulation von Workflownetzen eignet, da die meisten relevanten Fragestel-
lungen auch für dieses Thema adressiert werden müssen.

Umfeld

Für Workflows, Geschäftsprozesse, Arbeitsabläufe etc. existieren zahlreiche Mo-
dellierungsmöglichkeiten und zu den einzelnen Modellierungstechniken (-spra-
chen) (siehe oben) existiert eine Vielzahl von Werkzeugen für Modellierung, Ve-
rifikation, Validierung und Simulation der Modelle (siehe z.B. [26,16]). Eine allge-
meine Übersicht über Petrinetzwerkzeuge lieferten [8,21]. Eine (unvollständige)
Liste von Petrinetzwerkzeugen wird auf der Webseite der Petrinetz-Community
geführt: http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/

Renew

Renew ist ein Java-basiertes Werkzeug [16], welches mehrere Petrinetzvarianten
abdeckt, insbesondere Referenznetze. Referenznetze sind gefärbte Petrinetze mit
Java-Anschriften, synchronen Kanälen (siehe [13,4]) und Referenzen auf Netze
als Marken, wodurch Netze-in-Netzen darstellbar werden [15]. Es ermöglicht die
Modellierung und Simulation von Referenznetzen mittels einer Plugin-Archi-
tektur, wodurch die Funktionalität von Renew durch die Plugins dynamisch
und modular ergänzt werden kann. Im Laufe der letzten beiden Jahrzehnte sind
zahlreiche Plugins mit verschiedensten Funktionen entwickelt, untersucht und
erprobt worden.

Ein Plugin kann Renew zum Beispiel um einen neuen Formalismus oder an-
dere Funktionalitäten (z.B. für Analyse) erweitern. Auf dieser Basis wurden auch
Multiagentensystemanwendungen und zahlreiche Workflow-Plugin-Varianten ent-
wickelt. Der Kern von Renew wurde um die Jahrtausendwende entwickelt und
wird seitdem regelmäßig aktualisiert. So wurde eine neue Benutzungsoberfläche
entwickelt ([30]) und eine prototypische Umstellung auf Java 11 einschließlich
einer Umstellung auf das Modulkonzept von Java durchgeführt ([5]). Zum Teil
führte dies dazu, dass einzelne Plugins nicht mehr (vollständig) einsetzbar sind,
da die Interaktion mittels der neuen Benutzersoberfläche eine diesbezügliche
Anpassung erfordert. Die Wartung und Konsolidierung der Workflow-bezogenen

33

Plugins werden aktuell in der BSc-Arbeit von Hansson [9] bearbeitet. Aufgrund
des Umfangs und der Heterogenität der Plugins ergeben sich zahlreiche Schwie-
rigkeiten, die hier beschrieben und diskutiert werden.

Insgesamt ist also eine grundsätzliche Überarbeitung der vorhandenen Plug-
ins erforderlich. Unser Ziel ist es, für den Bereich der Workflows alle in Renew
verfügbaren Funktionalitäten (Plugins) und die Erweiterungsmöglichkeiten in
einem neuen Rahmenwerk als spezielle Renew-Variante zusammenzufassen.

Workflow-Plugins

Wie oben bereits erwähnt, gibt es zahlreiche Plugins für Renew, die einen Be-
zug zu Workflows haben. Dabei existieren Plugins, die Renew um neue Model-
lierungsmöglichkeiten erweitern, neue Formalismen einführen oder neue Analy-
severfahren bereitstellen (für mehr Details siehe https://paose.informatik.
uni-hamburg.de/paose/wiki/WorkflowConsolidation). Da auch die meisten
Plugins für Workflows länger nicht gewartet wurden und ihre Dokumentationen
sehr lückenhaft sind, ist es lohnenswert, einen Blick auf jedes Plugin zu werfen
um diese zu dokumentieren und nach Möglichkeit zu aktualisieren. Im Nachfol-
genden wird eine knappe Übersicht über die vorhandenen Plugins und Arbeiten
geboten.

Modellierung und neue Formalismen

Da Workflow-Modellierung ein zentraler Anwendungsbereich für Petrinetze ist,
wurde von Jacob eine Workflow-Transition mittels eines WF-Formalismus einge-
führt (siehe [12]). Durch die Bereitstellung eines einfachen Referenznetz-basierten
Formalismus kann somit für die Simulation eine Aktivität, beschrieben durch
ein Referenznetz, als Workflow-Transition ausgeführt werden. Das Besondere an
dieser Transition ist, dass sie mit dem Schalten anfängt (sie ist dann markiert),
wenn ein Nutzer die zugehörige Aktivität, die dem Task zugewiesen ist, an-
nimmt. Anschließend kann sie normal beendet werden oder aber die Aktivität
kann abgebrochen werden, so dass die Anfangsmarkierung vor dem Beginn des
Schaltens wieder hergestellt wird. (siehe [12]). Zugehörige Konzepte der Rollen
und Managementoptionen von WfMS (Workflow Managementsystemen) wurden
ebenfalls implementiert. Die Netzstruktur wurde nicht weiter beschränkt, was
eine generelle Nutzung der Workflow-Transition erlaubt. Intensive Verwendung
hat dieses Konstrukt z.B. in [23] für die Bearbeitung von Aufgabenblättern ge-
funden.
Mit den hierarchischen Workflownetzen wurde von Nikolas Lohmann ein auf
hierarchischen Netzen (siehe [7]) basierender Formalismus geschaffen, der es er-
laubt komplexe geschachtelte Workflowmodelle zu erstellen (siehe [17]). Dank
eines hierarchischen Baums ermöglicht das Plugin den schnellen Wechsel zwi-
schen verschiedenen Sichten.
Ein BPMN-Plugin ermöglicht es mit Renew BPMN-Diagramme zu erzeugen
und diese in Referenznetze umzuwandeln (siehe [11]).

34

Weitere Beiträge wurden in der Verknüpfung von Workflows und Agenten-
systeme geleistet. So wurden von Reese, Duvigneau, Cabac, Wester, Markwardt,
Bendoukha, Wagner und anderen im Rahmen des petrinetzbasierten, agenten-
und organisationsorientierten Softwareentwicklungs(Paose)-Ansatzes das Para-
digma der Agenten mit dem Konzept der Workflows / WfMS kombiniert und
integriert (siehe [20,6,3,28,18,2,27]). Dies ermöglicht die Entwicklung komplexer,
verteilter, adaptiver Systeme, die sowohl komplexe Strukturen als auch komplexe
Prozesse beinhalten.

Analyse-Werkzeuge

Zum Nachweis von Eigenschaften ist neben der Ausführung / Simulation, die
in den oben genannten Themenbereichen einen Schwerpunkt bildet, eine for-
male Analyse notwendig. Im Bereich der Analyseverfahren hat Renew mehrere
Plugins um Netze zu analysieren. Das NetAnalysis-Plugin ermöglicht es einen Er-
reichbarkeitsgraphen zu erzeugen, verschiedene strukturelle Eigenschaften, wie
z.B Free-Choice, zu prüfen und eine Reduktionsanalyse durchzuführen (siehe
[10]). Andere interne Werkzeuge für einfache P/T-Netze bieten z.B. einen ein-
fachen ModelChecker für CTL und LTL-Formeln (siehe [24]) oder die Analyse
von Workflownetzen auf Korrektheit an (siehe [1]). Durch Plugins wird ebenfalls
die Nutzung externer Werkzeuge wie Maria, Woflan, Prom, Lola, GreatSPN etc.
ermöglicht (siehe die Petrinetzwerkzeuglisten auf der Webseite der Petrinetz-
Community). Dies gelingt entweder über die Einbettung in ein Plugin oder über
den PNML-Export.

Konsolidierung

Die Bandbreite der oben genannten Beispiele verdeutlicht die Herausforderungen
für die aktuelle Arbeit (siehe [9]) an der Konsolidierung unserer zahlreichen Plug-
ins. Die Konsolidierung findet im Kontext mehrerer anderer Arbeiten statt, die
architekturelle und implementatorische Alternativen/Ergänzungen (siehe [5]),
neue Oberflächen (siehe [30]), sprachliche Erweiterungen (z.B. Curry als Be-
schriftungssprache (siehe [22]) oder Entwicklung eines Analyserahmenwerks (sie-
he [29])) etc. adressieren.

Softwaretechnisch besteht die Arbeit daher im Refactoring, allgemeiner War-
tung und zielgerichtetem Umbau der jeweiligen Plugins und Softwarekomponen-
ten. Dabei lassen sich Plugins aufgrund ihrer separaten Struktur besser pflegen
als die in Renew integrierten Softwarekomponenten, die (in)direkter Bestand-
teil von Renews Kernfunktionalität sind. Vorrangig wird die Software auf ihre
inhaltliche Notwendigkeit geprüft. Nur bei hinreichendem Bedarf werden die-
se dann überarbeitet. In Hinblick auf die Bereitstellung einer Workflow-Suite
werden zudem einzelne Softwarebestandteile zerlegt, so dass sie in Form neuer
Varianten besser kombinierbar werden und die alte Software vollständig erset-
zen. Zudem ist das Zusammenspiel mit der neuen Oberfläche, die von Martin
Wincierz erstellt wurde (siehe [30]), aufgrund neuer Möglichkeiten und einiger
Einschränkungen eine weitere Herausforderung bei der Softwarewartung.

35

Schluss

Schwachstellen von Renew werden systematisch beschrieben und zielgerichtet
behoben. Neueste Verfahren der Softwareerstellung werden eingesetzt und ver-
altete Sprachelemente ersetzt. Damit steht für die Modellierung, Simulation und
Analyse ein homogener Satz an Plugins in Renew zur Verfügung, der verschie-
dene Modelle im Bereich der Workflow-Modellierung oder allgemeiner der Pro-
zessmodellierung abdeckt.

Neben der bisherigen Architektur ist mittelfristig eine Variante von Renew
als Micro Service Architektur vorgesehen. Hierbei helfen die funktionale Zerle-
gung und die bisher prototypische Umstellung auf das neue Modulkonzept von
Java. Die Architektur ist darauf ausgelegt, dass wir leicht neue Kombinationen
von Konzepten und Konstrukten vornehmen können. In Hinblick auf domänen-
spezifische Sprachen (DSLs), die in unserer Gruppe mittels Metamodellierung
konzipiert werden, stehen uns damit auch wesentlich ausdrucksstärkere Mittel
zur Verfügung.

Literatur

1. L. Azzalini. Sichtung, Diskussion und Nutzung allgemeiner Verifikationsverfahren
für Petrinetze und prototypische Umsetzungen ausgewählter Verfahren im Werk-
zeug Renew. Diploma thesis, University of Hamburg, Dept. of Informatics, 2017.

2. S. Bendoukha. Multi-Agent Approach for Managing Workflows in an Inter-Cloud
Environment. Dissertation, University of Hamburg, Dept. of Informatics, 2017.

3. Lawrence Cabac. Modeling Petri Net-Based Multi-Agent Applications. Dissertation,
University of Hamburg, Dept. of Informatics, Vogt-Kölln Str. 30, D-22527 Ham-
burg, April 2010.

4. S. Christensen and N. D. Hansen. Coloured petri nets extended with channels
for synchronous communication. In R. Valette, editor, Application and Theory
of Petri Nets 1994, 15th International Conference, Zaragoza, Spain, June 20-24,
1994, Proceedings, volume 815 of Lecture Notes in Computer Science, pages 159–
178. Springer, 1994.

5. A. Daschkewitz. Modularisierung des Renew Plugin Systems (geplant für Oktober
2019). Master thesis, University of Hamburg, Dept. of Informatics, 2019.

6. Michael Duvigneau. Konzeptionelle Modellierung von Plugin-Systemen mit Petri-
netzen. Logos Verlag, Berlin, 2010.

7. Rainer Fehling. Hierarchische Petrinetze: Beiträge zur Theorie und formale Basis
für zugehörige Werkzeuge. Verlag Dr. Kovač, Hamburg, 1992.

8. F. Feldbrugge. Petri net tools. In G. Rozenberg, editor, Advances in Petri Nets
1985, volume 222 of LNCS, pages 203–223. Springer, 1985.

9. M. Hansson. Überblick über Workflownetze und Konsolidierung der workflowbezo-
genen Renew-Plugins (geplante Fertigstellung Dezember 2019). Bachelor thesis,
University of Hamburg, Dept. of Informatics, 2019.

10. M. Haustermann. Analyse von Workflows auf Basis von Petrinetzen. Bachelor
thesis, University of Hamburg, Dept. of Informatics, March 2010.

11. M. Haustermann. BPMN-Modelle für petrinetzbasierte agentenorientierte Soft-
waresysteme auf Basis von Mulan/Capa. Master thesis, University of Hamburg,
Dept. of Informatics, September 2014.

36

12. T. Jacob. Implementierung einer sicheren und rollenbasierten Workflowmanage-
ment-Komponente für ein Petrinetzwerkzeug. Diploma thesis, University of Ham-
burg, Dept. of Computer Science, 2002.

13. E. Jessen and R. Valk. Rechensysteme: Grundlagen der Modellbildung. Studienreihe
Informatik. Springer-Verlag, Berlin Heidelberg New York, 1987.

14. C. Knieke. Modellierung und Validierung von ausführbaren Anforderungsspezifi-
kationen mit erweiterten UML Aktivitätsdiagrammen. PhD thesis, University of
Braunschweig - Institute of Technology, 2011.

15. O. Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
16. O. Kummer, F. Wienberg, M. Duvigneau, L. Cabac, M. Haustermann, and

D. Mosteller. Renew – the Reference Net Workshop, June 2016. Release 2.5.
17. N Lohmann. Werkzeugunterstützung für hierarchische Workflow-Netze. Diploma

thesis, University of Hamburg, Dept. of Informatics, 2012.
18. K. Markwardt. Strukturierung petrinetzbasierter Multiagentenanwendungen am

Beispiel verteilter Softwareentwicklungsprozesse. PhD thesis, University of Ham-
burg, Dept. of Informatics, 2013.

19. M. Nüttgens and F. J. Rump. Syntax und Semantik Ereignisgesteuerter Prozess-
ketten (EPK). In J. Desel and M. Weske, editors, Promise 2002, 9.-11. Oktober
2002, Potsdam, volume 21 of LNI, pages 64–77. GI, 2002.

20. C. Reese. Prozess-Infrastruktur für Agentenanwendungen, volume 3 of Agent Tech-
nology – Theory and Applications. Logos Verlag, Berlin, 2010.

21. Harald S. An evaluation of high-end tools for Petri-nets. Bericht 9802, Ludwig
Maximilians Universität München, Institut für Informatik, München, June 1998.

22. Michael S., D. Moldt, D. Schmitz, and M. Haustermann. Tools for Curry-Coloured
Petri Nets. In Susanna Donatelli and Stefan Haar, editors, PETRI NETS 2019, Aa-
chen, Germany, June, 2019, volume 11522 of Lecture Notes in Computer Science,
pages 101–110. Springer, 2019.

23. D. Schmitz, D. Moldt, L. Cabac, D. Mosteller, and M. Haustermann. Utilizing Petri
Nets for Teaching in Practical Courses on Collaborative Software Engineering. In
ACSD 2016, Toruń, Poland, 2016, pages 74–83. IEEE Computer Society, 2016.

24. A. Stiefelmann. Entwicklung und Untersuchung von Model-Checker-Prototypen
für ausgewählte beschränkte Referenznetze als Plugin für den Referenznetzsimula-
tor Renew. BSc-Arbeit, University of Hamburg, Dept. of Informatics, 2016.

25. Wil M.P. van der Aalst. Verification of Workflow Nets. In ICATPN ’97: Proceedings
of the 18th International Conference on Application and Theory of Petri Nets, pages
407–426, Berlin Heidelberg New York, 1997. Springer-Verlag.

26. H. M. W. Verbeek, T. Basten, and Wil M. P. van der Aalst. Diagnosing workflow
processes using woflan. Comput. J., 44(4):246–279, 2001.

27. T. Wagner. Petri Net-based Combination and Integration of Agents and Workflows.
PhD thesis, University of Hamburg, Dept. of Informatics, 2018.

28. Matthias Wester-Ebbinghaus. Von Multiagentensystemen zu Multiorganisations-
systemen – Modellierung auf Basis von Petrinetzen. Dissertation, University of
Hamburg, Dept. of Informatics, Vogt-Kölln Str. 30, D-22527 Hamburg, 2010.

29. S. Willrodt. Towards Model Checking for Reference Nets (geplant für Dezember
2019). Bachelor thesis, University of Hamburg, Dept. of Informatics, 2019.

30. M. Wincierz. Verbesserung der Erweiterbarkeit und Benutzbarkeit der grafischen
Oberfläche des Petrinetz Simulators Renew. Master thesis, University of Ham-
burg, Dept. of Informatics, 2018.

37

Spatial Encoding of Systems
Using Coloured Petri Nets

George Assaf ∗, Monika Heiner

Computer Science Institute, Brandenburg Technical University
Postbox 10 13 44, 03013 Cottbus

George.Assaf@b-tu.de, monika.heiner@b-tu.de
https://www-dssz.informatik.tu-cottbus.de

Abstract Modelling spatial information of multiscale systems is crucial
for understanding the underlying events happening at different temporal
and spatial levels. Unfortunately, the limitation of current modelling ap-
proaches including Petri nets is to efficiently model such systems. Colored
Petri nets are an excellent formalism for modeling and analysing complex
systems. We present two spatial encoding schemes using coloured Petri
nets in Snoopy tools. We demonstrate each scheme by an example and
finally discuss the advantages and disadvantages of each scheme.

Keywords: spatial modelling · simulation · unfolding · coloured con-
tinuous, stochastic and hybrid Petri nets

1 Objectives

Complexity and multiscaleness are main characteristics of many systems in which
numerous events happen at different temporal and spatial levels. Reaction dif-
fusion systems [4] are a basic example of biochemical processes which develop
over time and space. However, Modelling such processes requires taking loca-
tion information into consideration, for example, diffusion can only be happened
between two neighbouring grid positions.

Coloured Petri nets (PN C) are a powerful modelling mechanism. They
combine the expressive power of Petri nets with programming languages [3].
While Petri nets offer a graphical notation for modelling concurrent and syn-
chronized systems, programming languages provide numerous data types which
allow to enrich Petri nets with user-defined functions, coloured expressions and
other annotations, and thus they allow to model complex systems in a compact
fashion which is the most important feature of coloured Petri nets. As standard
Petri nets, coloured Petri nets consist of places, transitions and arcs. Moreover,
PN C is enriched by a set of discrete data types (called colour sets), and a
set of expressions that are used to define the initial marking, arc inscriptions,
and guards. Each place gets assigned a colour set and may contain distinguish-
able tokens, represented as a multiset expression over the assigned colour set. A
multiset is a set, where one element can occur several times. Each transition gets

∗corresponding author

38

a guard, which is a Boolean expression over variables, constants or functions of
the defined colour sets. The guard of a transition has to be evaluated to true for
enabling the transition.

Coloured Petri nets are a powerful modelling tool and thus they are excellent
choice for modelling processes which develop over time and space where all spa-
tial information is encoded using colours and other annotations. We are going
to demonstrate how this can be done using two encoding schemes.

2 First encoding scheme

We are going to translate the idea of this scheme using a well-known biochemical
process called Continuous Diffusion [1]. Diffusion is a basic biochemical reaction
process which evolves over time and space. It is regarded as the simplest form
of passive mobility; diffusion starts with a higher concentration of species at the
middle of space, with all other space positions initially set to 0, and then it goes
from regions of higher concentration to regions of lower concentration.

By using coloured Petri nets, space is discretised into a grid of one, two or
three dimensions. Each dimension is represented by a colour set of type integer;
sets of colours are thus discrete and finite. A position at the 2D grid is represen-
ted by Cartesian Product of simple colour sets e.g, D1 x D2, where D1 and D2
are colour sets of the first and second dimensions respectively. Diffusion between
two neighbouring grid positions is modeled by using a coloured transition. The
coloured transition is associated with a guard working as a neighbourhood func-
tion (Boolean function); checking the neighburhood relation between two grid
positions. It is worth mentioning that the neighbourhood function can be easily
defined to check the two, four, eight or diagonal neighbourhood relation which
means the inner grid positions have two, four, eight or diagonal neighbours re-
spectively. When a guard is evaluated to true (two grid positions are neighbours),
one instance of a coloured transition will fire and re-colouring tokens of the col-
oured place will take place.

2.1 Example

Let us assume 2D Biochemical Diffusion defined on a grid of 15 x 15, we assume
also that diffusion starts with a concentration of 100 from the middle of the grid.
To model each dimension, one colour set has to be defined per each dimension
e.g, 15 colours/dimension in our example meaning we have 15 colours (positions)
per each dimension. To control the diffusion through a grid, a product colour set
has to be defined based on the previously defined simple colour sets and then
the product colour set has to be assigned to a coloured place. To initialise the
marking of the coloured place with 100 at the center of our grid, the marking
of coloured tokens has to be assigned by using a marking function which is an
expression e.g, 100‘(x=MIDDLE, y=MIDDLE) where x and y are two variables
declared on the first and second dimension (colour set) respectively, MIDDLE

39

is a constant gets assigned an integer value representing the middle of each di-
mension. The former colour function will assign 100 tokens of colour ‘8‘ from
the two colour sets. Since diffusion can only be taken place between two neigh-
bouring grid positions, a Boolean neighbourhood function has to be defined. The
Neighbourhood function takes two grid positions (one colour of each dimension)
as an input and checks whether the two positions are neighbours or not. The
neighbourhood function has to be assigned to the coloured transition as a guard;
compare Figure 1 for the whole model.

The following lines explain the definitions of required colour sets, neighbour-
hood function (each grid position has four neighbours) and the declarations of
required variables and constants:

const D1 = int with 15; // grid size first dimension
const D2 = D1; // grid size second dimension
const MIDDLE = int with D1/2+1;

colorset CD1 = int with 1´D1; // row index
colorset CD2 = int with 1´D2; // column index
colorset Grid2D = product with CD1 x CD2; // 2D grid

var x , a : CD1;
var y , b : CD2;

fun bool neighbour2D4 (CD1 x , CD2 y , CD1 xn , CD2 yn) t
// (xn , yn) is one of the up to four neighbours of (x , y)
(xn=x & yn=y´ 1) | (xn=x & yn=y+1)
| (yn=y & xn=x´ 1) | (yn=y & xn=x+1)
& (1ă“xn & xnă“D1) & (1ă“yn & ynă“D2) u ;

Figure 1: Continuous coloured Petri net of 2D Diffusion and its annotations
using the first spatial encoding scheme.

40

Model simulation Simulation of the model is undertaken in Snoopy tools
by unfolding the coloured continuous Petri net (CPN C) model into a standard
continuous Petri net. Unfolding of the model is automatically performed in the
background which allows to make use of all the existing powerful Petri net ana-
lysis and simulation techniques. Figure 2 shows the 2D plot of simulation results
at different three time points.

Figure 2: 2D plot of simulation trace at simulation time 20s (left), 40s (middle)
and 80s (right).

3 Second spatial encoding scheme

In this scheme, space is encoded by introducing spatial places; places hold tokens
representing coordinates of a moving object (location information). Increasing a
spatial place means adding tokens to that place which can be achieved by con-
necting a pre-spatial transition to it using a standard arc and thus increasing the
movement on space. On the other hand, decreasing a spatial place means remov-
ing tokens from that place which can be achieved by connecting the spatial place
to a post-spatial transition using a standard arc and thus decreasing the move-
ment on space. Please note that the spatial places and transitions are standard
Petri net elements e.g, discrete places and stochastic transitions; we use the term
”Spatial” just to recognise their spatial functionalities in the studied model. To
avoid trespassing of the defined finite spatial space, Read and Inhibitory arcs
have to be used. The inhibitory arcs have to be weighted by the maximum size
of space, whereas the read arcs have to be weighted by the minimum size of
space. Figure 3 demonstrates movement of an object over 2D space using this
approach. To permit the movement ON/OFF, a circular Petri net component
has to be used; compare Figure 4.

3.1 Example

We are going to demonstrate this encoding scheme using a test case called Mov-
ing Robot. The Robot has a size of up to 2x2 meters and it moves on a straight
line in the center of the room covering a distance of 7 meters. Since it arrives the

41

Figure 3: Modelling spatial informa-
tion of a 2D space.

Figure 4: Embedding a circular Petri
net component to permit the mobil-
ity.

first end, it moves back in the opposite direction and so on. The Robot initially
occupies the positions 2 and 3 on the X-Axis and 3 and 4 on the Y-Axis.

Since the Robot has a size of 2x2m, two colour sets have to be defined. The
first colour set defines its width and the second one defines its height. Each colour
set contains a number of colours equals to the size of Robot on each dimension.
We assume that the Robot moves horizontally (on the X-Axis) which means
that location information of the Y-Axis needs not to be changed during the
movement. For each movement, two positions of space need to be changed on
the x-Axis, for example, if the positions 1 and 2 are occupied by the Robot on the
x-Axis, the next occupied positions will be 2 and 3. This requires to decorate the
read and inhibitory arcs with the minimum and maximum of the two positions of
space that the Robot may reach; this can be done using coloured expressions. To
model the movement way that the Robot follows, a circular Petri net component
with its own variable has to be used in our model. For the whole model, compare
Figure 5. The following lines show definitions of the coloured Petri net :

const SIZE = int with 2;//size of Robot on each dimension
//constants declaration of movement borders
const X1MAX = int with 6;
const X2MAX = int with 7;
const X1MIN = int with 2;
const X2MIN = int with 3;

colorset Width = int with 1 ´ SIZE;// number of occupied positions on x-axis
colorset Height = int with 1 ´ SIZE;// number of occupied positions on y-axis

var x : Width;//row index
var y : Height;//column index
var s : Width;// switching movement from right to left and vice versa.

42

Model simulation Simulation of the Moving Robot model is undertaken by
automatic unfolding the coloured stochastic Petri net (SPN C) into a standard
stochastic Petri net (SPN). Figure 6 depicts the 2D plot of simulation results
at different three time points. Please note that the coloured positions at the 2D
plot mean that those positions have been visited more than one time by the
Robot.

For reasons of space, all references to Figures of this example relates to the
Appendix.

4 Discussion

We presented two spatial encoding schemes by exploiting the expressive power of
coloured Petri nets. Simulation is undertaken at the uncoloured level by unfold-
ing in Snoopy tools [2]. Both encoding schemes can be applied to continuous,
stochastic and hybrid Petri nets. The first encoding scheme is characterized by
descretising space using finite colour sets and thus finite universe. Moreover,
all space-related information is encoded in colour, and thus chaining the no-
tion of space means adaption of colour-related definitions; coloured Petri net
structure remains the same. A drawback of this scheme is that the size of the
unfolded model increases extremely as the size of space increases. This has an
impact on the analysis and simulation efficiency. On the other hand, space is
represented by introducing coordinate places using the second scheme, and thus
local states of each moving object can be tracked which is the main feature
that the second encoding scheme outperforms the first scheme. Additionally,
each coordinate place represents one dimension of the encoded space; the pos-
itioning information of an object is characterized by the number of tokens on
these places. Similar to the first encoding scheme, changing the notion of space
using the second spatial encoding scheme means adaption colour-related inform-
ation. The next step will be modelling more complicated spatial models using
the second encoding scheme; this may require further development on Snoopy
tools which is our powerful modelling, animation and simulation tool of various
types of Petri net classes. Interested users can reproduce the results of the two
presented models in this paper by retrieving the required source materials from
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Examples.

References

1. Gilbert, D., Heiner, M.: Petri nets for multiscale Systems Biology. http://

multiscalepn.brunel.ac.uk/, Brunel University, Uxbridge/London (2011)
2. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – A Unifying Petri

Net Tool. In: Proc. ATPN. pp. 398–407. Springer, LNCS 7347 (2012)
3. Liu, F.: Colored Petri Nets for Systems Biology. Ph.D. thesis, BTU Cottbus, Com-

puter Science Institute (January 2012)
4. Liu, F., Blaetke, M., Heiner, M., Yang, M.: Modelling and simulating reaction dif-

fusion systems using coloured Petri nets. p. 297308. Elsevier (2014)

43

5 Appendix

Here we provide two screenshots outlining the workflow of modelling and sim-
ulation the Moving Robot test case using the second spatial encoding scheme.

Figure 5: Stochastic coloured Petri net of the moving Robot model using the
second spatial scheme.

Figure 6: 2D plot of simulation trace at simulation time 20s (left), 40s (middle)
and 80s (right).

44

Implementation Semantics of Petriflow Models

Gabriel Juhás1,2,3, Juraj Mažári1,2, Milan Mladoniczky1,2, and Ana Juhásová3

1 Faculty of Electrical Engineering and Information Technology, Slovak University of
Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava, Slovakia,

2 NETGRIF, s.r.o., Jána Stanislava 28/A, 841 05 Bratislava, Slovakia
3 BIREGAL s. r. o., Klincova 37/B, 821 08 Bratislava, Slovakia

Petriflow is a Petri net based language for developing process driven client
server applications, see e.g. [1] and [2] for more details. Briefly, Petriflow uses
Petri nets (with read arcs, inhibitor arcs and reset arcs) to describe workflow
processes where transitions represent tasks. Data variables can be attached to
a process, creating its data set, and they can be associated with tasks creating
so called data references in tasks. Similarly, roles can be attached to a process,
and they can be associated with tasks creating so called role references in tasks.
Petriflow provides also events for constructors and destructors, that create and
destroy instances of workflow processes in runtime. In fact, the semantics of a
Petriflow instance is given using more detailed Petri net derived from the original
Petri net modelling the workflow. By calling constructor of a process a copy of
such Petri net is created.

In this more detailed Petri net, also called Petriflow event net, transitions of
the original net representing tasks are refined into several transitions representing
events of the task (such as assign, finish, cancel, reassign). Similarly, places
representing that the task is being executed and the task is not being executed
are added. In Petriflow task autoconcurrency is not supposed, i.e. there cannot
be two copies of a task running in parallel in the same instance. Implicit places
representing for each variable the states, namely whether it is locked or unlocked
are added. Implicit transitions representing the events on data variables, such
as setData are added.

For data references, we distinguish whether they lock or not their data vari-
ables. Namely, if a data reference lock its data variable for its task by assigning
the task, then no other task that has a lock data reference to the same data
variable can be assigned. This is realized in the event net by an ingoing arc
from the unclocked place of the data variable to the locked places. For each data
variable, two values are stored, one is called stable value and another is called
actual value. Once a constructor is creating an instance, both values are equal. If
a data variable is locked by firing assign event transition of a task with lock data
reference to this data variable, its actual value can be changed by firing setData
event transition. By firing cancel event transition of the task, the stable value
is assigned to the actual value, while by firing finish event transition, the actual
value is assigned to the stable value. Thus, when a data variable is unlocked then
stable and actual values are equal, i.e. when no task of an instance is executed,
then stable and actual values are equal.

The semantics of the Petriflow event net representing an instance is given by
firing event transitions. For the purpose of this paper, the state of the instance

45

itself is given by the Petriflow event net marking and the two values of each data
variable. The state is changed by the event transition firing, where cancel, finish
and setData change the state of values of data variables as described.

As it was stated, the purpose of the Petriflow language is to enable develop-
ment of client-server based applications, in which, among others, client request
firing of event transition of process instances. Obviously, clients also request some
responses that do not require firing of event transitions in process instances on
server. Some of such requests include search queries, that as a response waits for
instances or list of instances, or tasks fulfilling the query. Another client requests
just do not require a server response at all, such as front end requests on a client
machine. In this contribution, we are concerning only on the processing of those
parts of client requests that require response of a server in form of a firing of an
event transition in a process instance.

Thus, we only consider two kinds of requests, one asking whether an event
transition is enabled, and other asking an event transition to fire. The response
is an object obtaining the status of the response. It also may obtain some specific
attributes, such as actual value in case of the request for event transition setData.

If a transition is enabled to fire, then the response for the request for enabled-
ness is the object obtaining the status true, otherwise the response is the status
false. If a transition is enabled to fire, then the response for the request for firing
is the object containing the status true, otherwise the response is status false.

Petriflow also provide actions. Namely, each event transition can have a pre-
action and a post-action, which are pieces of codes, that can contain requests
for event transition firing either in the same instance or in other instance of the
same process or another process. The requests of an instance on server can come
from many clients independently and in any frequency. The requests can be in
conflict. It is not necessary to execute the requests of an instance sequentially
in one thread, but it is necessary to decide for any request before it is processed
whether it is in conflict with the currently processed requests of the instance.
However, it is supposed that there exists a unique boundary such that the number
of executed threads for each instance is bounded by this boundary. Thus, it is
supposed that implementation of a Petriflow engine has a priority queue and a
unique scheduler for each instance. Once a request has the highest priority, it
creates a sub-queue with the highest priority containing requests from its pre-
action, followed by the request itself and the requests from its post-action. In
order to enable priority response to a sequence of requests called from an action
in another instance, one can use a special request called begin, which will create
a sub-queue with the highest priority (once the begin request has the highest
priority) and will finish this sub-queue by a special request called end.

References

1. Mažári, J., Juhás, G., Mladoniczky, M.: Petriflow in actions: Events call actions call
events. Algorithms and Tools for Petri Nets pp. 21–26 (2018)

2. Mladoniczky, M., Juhás, G., Mažári, J.: Process communication in petriflow: A case
study. Algorithms and Tools for Petri Nets pp. 27–32 (2018)

46

