
deposit_hagen
Publikationsserver der
Universitätsbibliothek

Mathematik
und
Informatik

Informatik-Berichte
377 – 05/2018

Jan Kristof Nidzwetzki,
Ralf Hartmut Güting

BBoxDB

A Distributed and Highly Available
Key-Bounding-Box-Value Store

BBoxDB - A Distributed and Highly Available

Key-Bounding-Box-Value Store

Jan Kristof Nidzwetzki
Ralf Hartmut Güting

Faculty of Mathematics and Computer Science
FernUniversität Hagen
58084 Hagen, Germany

{jan.nidzwetzki@studium.,rhg@}fernuni-hagen.de

May 2, 2018

Abstract

BBoxDB is a distributed and highly available key-bounding-box-value store, which is designed
to handle multi-dimensional big data. The software splits data into multi-dimensional shards
and spreads them across a cluster of nodes. In contrast to existing key-value stores, BBoxDB
stores each value together with an n-dimensional axis parallel bounding box. The bounding box
describes the spatial location of the value in an n-dimensional space. A space partitioner (e.g.,
a K-D Tree, a Quad-Tree or a Grid) is used to split up the n-dimensional space into disjoint
regions (distribution regions). Distribution regions are created dynamically, based on the stored
data. BBoxDB can handle growing and shrinking datasets. The data redistribution is performed
in the background and does not affect the availability of the system; read and write access is still
possible at any time. Multi-dimensional data can be retrieved using hyperrectangle queries; these
queries are efficiently supported by indices. Moreover, BBoxDB introduces distribution groups,
the data of all tables of a distribution group are distributed in the same way (co-partitioned).
Spatial-joins on co-partitioned tables can be executed efficiently without data shuffling between
nodes. BBoxDB supports spatial-joins out-of-the-box using the bounding boxes of the stored
data. Spatial-joins are supported by a spatial index and executed in a distributed and parallel
manner on the nodes of the cluster.

1 Introduction

Today, location-enabled devices are quite common. Mobile phones or cars equipped with small
computers and GPS receivers are ubiquitous. These devices often run applications that use location-
based services (LBS). For example, the navigation system of a car shows the direction to the next
gas station or a restaurant shows an advertisement on all mobile phones within a 10-mile radius
around itself. The data in this example is a position in the two-dimensional space. Data with other
dimensions are also quite common. For example, the position of a car at a given time results in a
point in three-dimensional space.

The challenging task for today’s systems is to store multi-dimensional big data efficiently. Four
major problems exist: (1) The data can change frequently (e.g., updating the motion vector of a
moving car in a moving objects database [23]) and the data store has to deal with high update
rates. (2) The datasets can become extremely large, so much so that a single node cannot handle
them. (3) Multi-dimensional data should be efficiently retrieved (i.e., hyperrectangle queries should
be efficiency supported). (4) For efficient query processing, related data of multiple tables should
be stored on the same hardware node (co-partitioning). Performing equi-joins or spatial-joins are
common tasks in applications and these type of queries have to be efficiently supported.

1

1.1 Key-Value Stores

In the last decade, NoSQL-Databases have become popular. To handle large datasets, many of
them are designed as a distributed system. Key-value stores (KVS) are a common type of NoSQL-
Databases, which focus on storing and retrieving data. Features such as complex query processing
are not implemented. A KVS supports at least two operations: put(key, value) and get(key).
The first operation stores a new value identified by a unique key (a tuple). The key can be later
used to retrieve the stored value with the get operation. Usually, the key is a string value and the
value is an array of bytes.

In a distributed KVS, the whole dataset is split into pieces (shards) and stored on a cluster of
nodes. Each node of the cluster stores only a small part of the data; this technique is known as
horizontal scaling. As the dataset grows, additional nodes can be used to store the additional data.
To enhance data availability, data are replicated and stored multiple times onto different nodes. In
the event of a node failure, the data can be retrieved from another node.

When working with big datasets, a significant challenge is to distribute the data equally across all
available nodes. Otherwise, some nodes can be over-utilized while other nodes remain under-utilized.

1.2 Multi-Dimensional Data in Key-Value Stores

A KVS stores a certain value under a certain key. The key has two roles in a distributed KVS: (1) it
is used to identify a tuple clearly and (2) to assign a tuple to a certain node. Range-partitioning
and hash-partitioning are used today to determine which node is responsible for which key.

(1) Range-partitioning: Ranges of keys are assigned to the available nodes. For example, Node 1
stores all keys starting with a, b, c, or d; Node 2 stores all keys starting with e, and so on. Range
partitioning is simple to implement and ensures that similar keys are stored on the same node. When
a node becomes overloaded, the data is repartitioned. The data is split into two parts, and another
node becomes responsible for one of the parts.

(2) Hash-partitioning: A hash function is applied to the tuple keys. The value range of the
function is mapped to the available nodes. The mapping determines which node stores which data.
In most cases, the hash function scatters the data equally across all nodes; tuples with similar keys
are stored on different nodes. Consistent hashing [28] makes it possible to add and remove nodes
without repartitioning the already stored data.

Finding a proper key for multi-dimensional data is hard and often impossible; this is especially
true when the data has an extent (non-point data, also called region [23]). To retrieve multi-
dimensional data from a key-value store, a full data scan is often required. This is a very expensive
operation which should be avoided whenever possible.

Figure 1.2 depicts the key determination problem for one- and two-dimensional data. A customer
record and the geographical information about a road should be stored in a KVS. For the customer
record the attribute customer id can be used as the key1. Finding the key for a road (two-dimensional
non-point data) is much more difficult. In traditional KVS, the data is stored under an unrelated
key (e.g., the number of the road, like road 66) and a full data scan is required, when the road needs
to be retrieved that intersects particular coordinates.

1.3 BBoxDB

BBoxDB uses a different technique to distribute the data. As a key-bounding-box-value store (KBVS),
BBoxDB stores each value together with an n-dimensional axis parallel bounding box. The bounding
box describes the location of the value in an n-dimensional space. For BBoxDB–and generally for
KVS–the value simply is an array of bytes. The meaning of the bytes depends on the application
that generates the data. Therefore, the value can not be interpreted by the data store. The data
store does not know which data belong together and which do not. A tuple in BBoxDB is defined

1The customer record has four attributes, but we assume that the customer record is accessed only via the customer
id and we can treat the complete record as one-dimensional data.

2

customerid=1234,
firstname=John,
lastname=Doe

email=customer@domain.tld

Key 1234

a) One-dimensional data (e.g., a customer record)

L
at

it
u
d

e

Longitude

Key ?

b) Two-dimensional data (e.g., a road)

Figure 1: Determining a key for one- and two-dimensional data.

as t = (key, bounding box, value). The key is used to identify a tuple clearly in update or delete
operations.

When saving data in BBoxDB, a value and a suitable bounding box must be passed to the
put() method. This means more work for application developers, who have to build a function
that calculates the bounding box. But it solves the problem that only a one-dimensional key and
a meaningless array of bytes is passed as a value to the data store. The bounding box is a generic
way to provide contextual information independently from the data. It maps the data to an n-
dimensional space and geometric data structures can be used to work with the data. Partitioning and
organizing elements in an n-dimensional space are a common problem for geometric data structures
(see Section 3.2).

A space partitioner is responsible for partitioning the space and mapping parts of the space
(distribution regions) to the available nodes. Overloaded distribution regions are split by the space
partitioner and redistributed dynamically (see Section 3.2). Even if distribution regions are split,
read and write access to them are still possible at any time (see Section 4.1). At the moment,
BBoxDB ships with a K-D Tree space partitioner, a Quad-Tree space partitioner and a Grid space
partitioner. Additional space partitioners can be integrated easily by implementing a Java interface.

BBoxDB is written in Java, licensed under the Apache 2.0 license [5] and can be downloaded
from the website [9] of the project. A client library for the communication with BBoxDB is available
at Maven Central [10]; a popular repository for Java libraries. So, the client library can be easily
imported into other Java projects. The client library provides an implementation of the network
protocol of BBoxDB and some helper methods that simplify the work with BBoxDB.

1.4 Contributions and Outline

The main contributions of this paper are as follows: (1) We present the novel concept of a key-
bounding-box-value store. (2) We employ the geometrical data structures (like the K-D Tree or the
Quad-Tree) to solve a new problem: Managing shards in a distributed datastore. (3) We introduce
the novel concept of distribution groups. All tables of a distribution group are distributed in the same
way (i.e., co-partitioned). (4) We show the handling of objects with an extent. (5) We demonstrate
how data with different dimensions can be handled. (6) We provide a practical and freely available
implementation.

The rest of the paper is organized as follows: Section 2 describes the basics of the technologies
used in BBoxDB. Section 3 introduces the architecture of the system. Section 4 describes some
advanced architecture topics. Section 5 gives a evaluation of the system. Section 6 describes the
related work. Section 7 concludes the paper.

3

2 Building Blocks of the System

BBoxDB employs existing technologies to accomplish its work. The basics of these technologies are
described in this section in brief.

2.1 Bounding Boxes

A bounding box is a geometric object; it is defined as the smallest rectangle that encloses an object
completely. In this paper, we assume that bounding boxes are parallel to the Cartesian coordinate
axis (so-called axis-aligned minimum bounding boxes). Bounding boxes are a generic data abstraction
and they can be constructed for almost all types of data.

Data of an n-dimensional relational table can be described as points in an n-dimensional space
[41, p. 1]. Spatial and spatio-temporal data can be described in two or three-dimensional space
regarding their location and extent. A customer record can be described with a bounding box over
some of the attributes (e.g., customer id, first name, last name, email). It is only important that
the data has attributes and a function can be found that maps the attributes into R to construct a
bounding box.

2.2 Apache Zookeeper

Building a distributed system is a complex task. Distributed tasks need to be coordinated correctly
in a fault-tolerant manner. Apache Zookeeper [26] is a software that is designed to handle this
work. The developers of Zookeeper describe it as a distributed metadata filesystem. Zookeeper was
developed after Google published a paper about Chubby [13], which is used in systems like GFS [21]
or BigTable [14]. Today, Zookeeper is used in a large number of systems to coordinate tasks.

Zookeeper provides a highly available tree (similar to a file system) that can be accessed and
manipulated from client applications. The tree consists of nodes (similar to a directory in a file
system) that have a name. A path describes the location of a node in the tree and consists of
the names of all nodes, beginning from the root, separated by a slash. For example, the path
/node1/childnode2 points to a node called childnode2, which is a child of the node node1.

The tree consists of two different kinds of nodes: (1) persistent nodes and (2) ephemeral nodes.
Persistent nodes are stored in the tree until they are deleted. Ephemeral nodes are deleted auto-
matically as soon as the creating client disconnects. Zookeeper also supports watchers. By creating
a watcher, a client gets notified as soon as the watched node changes.

2.3 SSTables

String Sorted Tables (SSTables) [14] are files that contain key-sorted key-value pairs. They are a
kind of Log-Structured Merge-Trees (LSM-Trees) [37]. Google used SSTables in BigTable, as an
alternative to existing data storage engines. The goals of SSTables are to provide a high write
throughput and to reduce random disk IO. In contrast to other storage engines like ISAM (Index
Sequential Access Method) or B-Trees, written data are not modified.

Modifications–such as changing or deleting data–are performed simply by storing a new version
of the data. Deletions are simulated by storing a deletion marker for a particular key. A timestamp
is used to keep track of the most recent version of the data.

New data are stored in a data structure called Memtable. As soon as a Memtable reaches a
certain size, the table is sorted by key and written to disk as a SSTable. With time, the number of
SSTables grows on disk. In a major compactification, all SSTables are merged into a new SSTable.
SSTables are sorted by key to enable the compactification process to be carried out efficiently:
The SSTables are read in parallel and the most recent version of a tuple is written in the output
SSTable. The new SSTable contains only up-to-date tuples. No deletion markers are needed to
invalidate older versions of the tuple. Therefore, all deletion markers can be removed. In addition to
a major compactification, in which all data is rewritten, smaller minor compactifications also exist.
In a minor compactification only two or more tables are merged and outdated data are removed.

4

Deletion markers are written to the new SSTable. Other SSTables may exist which contain older
versions of a tuple that needs to be invalidated by a deletion marker.

All SSTables and Memtables are associated with a Bloom filter [12]. The filter is used to prevent
unnecessary table reads. Bloom filters are a space-efficient probabilistic data structure. The Bloom
filter contains information regarding whether or not an SSTable or a Memtable might contain a
certain key.

3 Architecture of the System

In this section, the architecture of BBoxDB is described. BBoxDB is a distributed system; an
installation of BBoxDB usually consists of multiple processes running on multiple nodes. A running
BBoxDB process is from now on referred as BBoxDB instance. A BBoxDB instance is responsible
for the data of one or more distribution regions (see Section 3.3).

To blend the distributed BBoxDB instances into a unified system, Zookeeper is used. Zookeeper
accomplishes mainly two tasks: (1) It discovers all running BBoxDB nodes, keeps track of the state
of the nodes, and provides a list with all contact points (i.e., IP-Addresses and ports). (2) It stores
the distribution directory. The distribution directory contains a mapping between the distribution
regions and the BBoxDB instances that are responsible for a region. Figure 2 depicts an installation
with four BBoxDB instances on four hardware nodes (node1, node2, node3, node4). Each hardware
node runs one BBoxDB instance. Each instance is responsible for multiple distribution regions.

Distribution

directory stored

in Zookeeper

node 1 node 2

node 3node 4

[...] 73

[...] 11

[...] 5

[...] 26

[...] 74

[...] 64

[...] 15

[...] 2

[...] 37

Figure 2: A cluster with four BBoxDB instances. Each instance stores the data of multiple distri-
bution regions.

3.1 Supported Operations

The operations of BBoxDB can be categorized into two groups: (1) operations that define the
structure of the data and (2) operations that work with the data. The first category includes
operations that define distribution groups and tables while the second category includes operations
that read and write tuples. Table 1 presents an overview of the supported operations.

The operations createDGroup and deleteDGroup are used to create and delete distribution
groups. When a distribution group is created, additional parameters such as the dimensionality and
the replication factor have to be specified. The operations createTable and deleteTable are used
to create and delete tables. Tables are a collection of tuples. The operation put is used to store new
data, while the operation delete removes data from a table. The operation getByKey receives the
data for a given key. The operation getByRect receives all data, whose bounding box intersects a
given hyperrectangle. The operation getByTime returns all the data that is newer than the given
time. The operation getByTimeAndRect combines both of the previous operations–all data that
intersect a given hyperrectangle and are newer than a given time stamp are returned. The operation
join executes a spatial-join based on the bounding boxes of two tables. The tuples of both tables
that have bounding boxes that intersect each other inside of a certain hyperrectangle are returned.

5

Data definition:

createDGroup string × config → boolean
deleteDGroup string → boolean
createTable string × config → table
deleteTable string → boolean

Data manipulation:

put table × tuple → table
delete table × string → table
getByKey table × string → tuple(...)
getByRect table × hyperrectangle → stream(tuple(...))
getByTime table × int → stream(tuple(...))
getByTimeAndRect table × hyperrectangle × int → stream(tuple(...))
join table × table × hyperrectangle → stream(tuple(...))

Table 1: Supported operations by BBoxDB.

3.2 Two-Level Indexing

We have implemented a two-level index structure to efficiently locate tuples. A global index structure
determines, which node is responsible for which area in space. A local index structure on each node
is responsible for locating individual tuples. The local index has to be changed as soon as new tuples
are written to disk.

The global index structure, called the distribution directory, is stored in Apache Zookeeper. All
clients maintain a local copy of the global index structure in their memory. This enables them
to query the data structure quickly. The basic idea of two-level indexing is that the global index
structure contains subspaces (distribution regions) instead of tuples. Changing the distributed global
index structure is an expensive operation. In our implementation, the global index structure has
only to be changed when the mapping between the nodes and distribution regions is changed; storing
tuples does not affect the global index structure. The local index structure employs an R-Tree [24].

The global index can be created with different data structures. At the moment BBoxDB supports
K-D Trees [11], Quad-Trees [18] and a fixed grid to create the global index. Depending on the
used data structure, BBoxDB provides different features. Some data structures support dynamic
partitioning, others do not. Some support splitting the space at any desired point; others work with
fixed split points.

The K-D Tree is the most flexible data structure, it supports the dynamic partitioning of the
space and it can split the space at every desired position. The Quad-Tree also supports dynamic
partitioning but it can split the space only at fixed positions. The fixed grid is the less flexible data
structure. The space is split up into fixed cells and the data can not be partitioned dynamically.
The fixed grid is primarily implemented in BBoxDB for comparison experiments with other space
partitioners. Because the K-D Tree is the most flexible data structure for the global index, we will
discuss only this data structure for the global index in this paper.

3.3 Distribution Groups, Distribution Regions, Table Names, and Region Tables

Distribution groups determine the data distribution of a collection of tables. Each table in BBoxDB
belongs to exactly one distribution group. The table name is always prefixed with the name of the
distribution group. For example, the table mytable in the distribution group mygroup is named:
mygroup mytable

The data of an n-dimensional space is split into disjoint spaces, called distribution regions. A
distribution region is a subspace of an n-dimensional space. According to the replication factor, one
or more BBoxDB instances are responsible for storing the data of a distribution region.

The tables in BBoxDB are split according to the distribution regions. These region tables are
stored on various nodes. To identify the region table a suffix–called the region id of the table–is

6

attached to the table name. For example, the fifth region table mytable in the distribution group
mygroup is named: mygroup mytable 5

Figure 3 depicts an example: A two-dimensional distribution group is split up into three dis-
tribution regions (shards). The data of the contained table customer is spread according to the
distribution group’s structure. The two attributes id and age of the table are used to determine the
location of the tuples in the two-dimensional space.

node c

node b

node a

id

a
g
e

region 0

region 1 region 2

�

�

�

�

�

�

�

�

�

Figure 3: Spreading the table customer onto multiple nodes using two-dimensional shards.

3.4 Redistributing Data

Adding or removing data can cause an unbalanced data distribution. Two values (toverflow and
tunderflow, with toverflow > tunderflow) control the redistribution of the data. When the size of a
distribution region is larger than toverflow, the region is split. When the sum of the mergeable
distribution regions is smaller than tunderflow, the region is merged. We call distribution regions
mergeable when the space partitioner can merge these regions. With the K-D Tree space partitioner,
all the leaf nodes of the same parent can be merged. The redistribution of the data is performed
in the background. At all times, read and write access to the data is possible. Each distribution
region also has a state that determines whether read or write operations are sent to this region or
not. Table 2 lists all the possible states of a distribution region.

State Description Read Write

CREATING The distribution region is in creation. no no
ACTIVE This is the normal state of the region. yes yes
ACTIVE-FULL The region has reached the maximal size and gets split soon. yes yes
SPLITTING The data is spread to the child nodes at the moment. yes no
SPLIT The region has been split and the data is spread to the child nodes. no no

Table 2: The states of a distribution region.

Mainly the split of a distribution region consists of two steps: (1) finding a good split point.
This means that after the split the resulting regions should have an almost equal amount of stored
tuples and (2) redistributing the already stored data. BBoxDB reads samples from every table in the
distribution group. The samples are used to find a split point that creates two distribution regions
with equal numbers of stored tuples.

Keeping the distribution region accessible during the split requires some additional steps. The
basic idea is, to create the new regions and store all newly written data immediately in the new re-
gions. Queries are executed on the old and the new regions until the data is completely redistributed.
On a replicated distribution group, several BBoxDB instances could notice at the same time that
the region needs to be split. To prevent this, the state of the distribution region is changed from
ACTIVE to ACTIVE-FULL. Zookeeper is used as a coordinator that allows exactly one state change.
Only the instance who performs this transition successfully, executes the split.

7

When a region is split, the split position is published in Zookeeper and two new child-regions
are created. The new regions are created with the state CREATING to indicate that the data of the
region might be incomplete in Zookeeper. As soon as all data is available in Zookeeper (e.g., all
systems are stored in Zookeeper that are responsible for the region), the state of the regions is set to
ACTIVE. Beginning from this point in time, data is written to the old and to the new regions. Also,
queries will be sent to all regions.

Now, the existing data is spread to the new regions and the state of the old region is set to
SPLITTING. The old region does not accept new data from now on; but read access is still possible.
Tuples with a bounding box that intersects both new regions are stored in both new regions; these
tuples are duplicated. After all data is redistributed, the state of the old region is set to SPLIT.
From now on, no queries will be executed on this distribution region and the data of the old region
can now safely be deleted.

3.5 The Local Read and Write Path

Writing data is performed as already described in Section 2.3. To access data, BBoxDB supports
two different methods: (1) query a tuple by key and (2) query all tuples that intersect a bounding
box. Depending which access method is used, BBoxDB uses different strategies to retrieve the data.

Retrieving the tuple for a given key requires searching in all Memtables and SSTables for the
requested key. Memtables–which are very small and only exist until they are flushed to disk–
are completely scanned for the requested data, while SSTables are scanned using binary search.
To decrease the number of scanned Memtables and SSTables, Bloom filters are used. Only the
Memtables and SSTables that might contain the given key are read. The SSTables are accessed
using memory mapped files [27], which speed up data access. Memory mapped files provide faster
data access compared to standard file oriented IO, by reducing the number of needed system calls and
avoiding unnecessary memory copy operations. After all the Memtables and SSTables are processed,
the most recent version of the tuple is returned.

To find efficiently all tuples that intersect a particular bounding box, a spatial index is used.
The current version of BBoxDB uses an R-Tree to index the bounding boxes of the stored data. In
contrast to other KVS that support multi-dimensional data, the index-layer is directly implemented
at file system level and not build as an additional layer over the KVS.

3.6 The Network Read and Write Path

BBoxDB is a client-server application. Clients connect to the BBoxDB instances and request or
insert data. Therefore, it must be known which BBoxDB instances are alive, how they can be
reached and what data is stored on which instance. As described earlier, this information is stored
in Zookeeper. Each client connects to Zookeeper and reads this data. With the list of available
BBoxDB instances and the distribution directory, clients know which BBoxDB instances they have
to contact in order to perform an operation.

Compared to accessing data from a local hard disk or from memory, transferring data over a
network is relatively slow. Handling operations (see Table 1) can also take some processing time.
To deal with this, BBoxDB works with a binary, asynchronous, package oriented protocol. This
means that every operation is represented by a network package, i.e., a sequence of bytes. Each
package contains a sequence number to identify the package. BBoxDB handles the packages in an
asynchronous way; i.e., a BBoxDB instance accepts new packages continuously, even when previous
operations are not complete. A network connection can be used in a multiplexed manner; a client
can sent multiple packages in one connection, without waiting for the completion of the previously
transmitted packages.

As soon as a BBoxDB instance has read a package from the client, it performs the necessary
tasks to complete the operation. After an operation is completed, the server sends a result back
to the client. The result contains the original sequence number, in order to enable the client to

8

identify the original operation. Since the client application does not have to wait for the completion
of operations, a single connection can handle many operations in parallel.

For example, when three tuples should be stored on a BBoxDB instance, three put operation
packages (see Section 3.1) with different sequence numbers are sent to the BBoxDB instance. The
BBoxDB instance acknowledges the processing of each package as soon as the data is stored.

3.7 Joins and Co-Partitioned Tables

In comparison to data accessed from a local hard disk, data transfer through a computer network is
considerably slow, has high latency, and reduces the speed of data processing immensely. A common
technique to reduce network traffic is to run the data storage and the query processing application
on the same hardware. The aim is to access all the data from the local hard disk instead of accessing
the data from another computer.

BBoxDB and its distribution groups are designed to exploit data locality. All tables in a dis-
tribution group are distributed in the same manner (co-partitioned). This means that the same
distribution region of all tables is stored on one node. On co-partitioned data, a distributed equi- or
spatial-join can be efficiently executed only on locally stored data. For a join ./p, we call two parti-
tioned relations R = {R1, ..., Rn} and S = {S1, ..., Sn} co-partitioned iff R ./p S =

⋃
i=1,...,nRi ./p Si.

BBoxDB supports spatial-joins out-of-the-box using the bounding boxes of the stored data with the
join() operation (see Section 3.1).

For example: the two tables roads and forests store the spatial data of all roads and of all forests
in a certain area. Both tables are stored in the same distribution group. The bounding box of the
tuples is calculated using the location of the tuples in the two-dimensional space. A spatial-join
should determine which roads lead through a forest. Because all tables of a distribution group are
stored co-partitioned, all roads and all woods that might share the same position in space are stored
on the same BBoxDB instances (see Figure 4).

�

�

�

��

�

�
�

�

longitude

lat
itu

de

��

�

�

�

The sptial-join operation

Relation: forests

Relation: roads

Figure 4: Executing a spatial-join on local stored two-dimensional data. Both relations are stored
in the same distribution group. Therefore, the relations are partitioned and distributed in the same
manner.

4 Implementation Details

In the previous section, the basic architecture of BBoxDB is discussed. This section describes some
of the implemented techniques to improve the functionality.

4.1 Operation Routing

When a distribution region is split, the state of the region is changed multiple times (see Section 3.4).
There is a delay between changing the state in Zookeeper and the moment when all Zookeeper clients
have received the update. During that time, these nodes have an outdated version of the distribution
directory. We have observed that this delay can cause problems.

9

For example, assume we have two BBoxDB-instances A and B. A is responsible for the distri-
bution regions 1 and 2 and B is responsible for the distribution regions 3 and 4. A client wants to
write data into the regions 2, 3 and 4. The client sends a network package with the put operation
to instance A which processes the package. Now, the package is sent to instance B. We assume that
the distribution region 4 is split before the package has arrived at instance B. The newly created
region 5 is located on instance A and region 6 is located on instance B. Now the put operation is
processed by the instance B and the data is inserted into the local storage and active instances 3
and 6. The put operation has also be executed on the newly created region 5 on instance A, which
was missed. The operation was only executed on the regions 2, 3 and 6.

Our first solution for this problem was to check whether the distribution directory in Zookeeper
has changed between the begin and the completion of the write operation. We have observed that
Zookeeper updates have a long delay when a client is under load. Therefore, the instances A and B
can already have received the changes, and the client is still operating on an outdated version.

Another problem is that data often has to be stored on multiple nodes. This occurs (1) when
a distribution group is replicated on multiple nodes or (2) the bounding box of the data intersects
multiple distribution regions. In both cases, the client has to send the data to multiple BBoxDB
instances. The network bandwidth could become a bottleneck in this situation.

Most modern computer networks support full-duplex data transfer; data can be simultaneously
sent and received with the full speed of the network link. To exploit the full-duplex network links
BBoxDB implements a routing mechanism for put operations. The put network package contains a
routing list, which determines which BBoxDB instances should receive the package. The package is
forwarded between the BBoxDB instances regarding the routing list. The last node of the routing
list sends a success package back to the instance from which it received the package. The instance in
turn sends a success package to the node from which it received the package. That creates a chain
of success packages which finally arrives at the client (see Figure 5). This technique is known as
pipelining and is also used in GFS [21].

Client Node 1 Node 2

Write
operation

1 Gbit/s

Write
operation

1 Gbit/s

SuccessSuccess

Figure 5: Routing of a put operation between two nodes. The client sends the operation to node 1.
This node receives and sends data at the same time with 1 Gbit/s.

The package routing is also used to ensure that operations are sent to all desired distribution
regions, which solves the problem described in the example. The client generates the routing list at
the moment when the operation is triggered. The routing list contains the connection points (i.e.,
the IP-address and the port number) of all BBoxDB instances and the number of all distribution
regions which the operation should reach. The list with all active connection points is fetched from
Zookeeper. Each BBoxDB instance publishes its connection point there. Zookeeper keeps track that
unreachable instances are automatically removed. When a BBoxDB-instance receives a package with
a write operation, the contained data is inserted into the specified distribution regions, the routing
hop is increased by one and the package is send to the next BBoxDB instance in the routing list.

Before a BBoxDB instance inserts data into the local stored distribution regions, it checks
whether all local regions specified in the routing list are still writeable. When a distribution re-
gion is split, the region becomes read-only (see Table 2). If data should be written to an read-only
region, the BBoxDB instance sends an error package back. This error package is forwarded the hole
routing list back to the client. In this case, the client gets notified that the data was not written
completely. The client waits a short time, computes an up-to-date routing list and sends the insert
package again. This is repeated until the insert package has written the data to all desired distribu-
tion regions. When the clients received the success package back, the data has reached all desired
distribution regions.

10

Almost the same technique is implemented for read operations (queries). In contrast to the write
operations, the read operations are sent only to one node and the result of the operation is a list
of tuples. The routing list is used to specify which distribution regions should be queried. If a
distribution region cannot be queried (e.g., the split of a region is complete and the data is deleted)
an error package is sent back to the client. The client waits a short time and executes the query
again based on the newest data stored in Zookeeper.

4.2 The Java-Client

BBoxDB provides an implementation of the network protocol for the programming language Java
(the BBoxDB Java-Client). The Java-Client is available at Maven Central [10]; a popular repository
for Java libraries. All the supported operations of BBoxDB are available as a method of a Java class.
In addition, the driver reads the state and the addresses of the BBoxDB servers from Zookeeper
and creates a TCP-connection to each available instance. Failing and newly started instances are
automatically noticed due to the changes in the directory structure of Zookeeper.

The driver also keeps track of the state of the TCP-connections; it reopens a connection that
has closed unexpectedly. Also, keep-alive packages are sent periodically to keep the connection open
even when no data is being transferred. Sending keep-alive packages is a common technique in other
protocols also, for letting TCP-connections be established over a longer period. Components like
firewalls often track the state of connections and terminate idle connections.

The network protocol works in an asynchronous manner. Therefore, the result of an operation
becomes available after some time. We have implemented the Future pattern [8] in the BBoxDB-
Client. Each operation that involves server communication returns a future, not a concrete value.
The calling application code can wait until the concrete result is returned from the server or can
process other tasks during that time. This creates a high degree of parallelism in the client code
and helps to utilize the resources (e.g., the CPU cores and the network) as much as possible.

4.3 Merging and Compression of Operations

All operations between a BBoxDB instance and a client are encoded as packages. The BBoxDB
driver creates a TCP-Socket to each available BBoxDB instance. Each connection is associated with
a queue. The packages for each instance are stored in that queue. After 200 ms, the content of
each queue is put into a big envelope package and compressed. Afterward, the envelope package
is transferred over the network (see Figure 6). The receiving BBoxDB instance decompresses the
envelope package and processes all contained packages.

Compressing multiple operations into one package improves the compression rate and decreases
the network traffic for most kinds of data. Also, writing data to a network socket and flushing
the socket requires at least one system call. System calls are time-consuming operations. Therefore,
merging multiple operations into one bigger network package reduces the amount of expensive writing
and flushing operations. An experimental evaluation of this technique is discussed in Section 5.2.

The queuing of the operations adds some latency to the processing time of the package. As
described in Section 4.2, all network operations are executed asynchronously. Normally, the queues
are flushed every 200 ms. For inserting new data into BBoxDB, the latency does not matter. In
contrast, a query should be executed as fast as possible. The queuing increases the time until the
query is executed. Therefore, the queue is immediately flushed as soon as a query package is inserted.

In this section, the technique is described from a client’s point of view. The same technique is
implemented on the server side as well.

4.4 The GUI

BBoxDB ships with a GUI that visualizes the distribution directory and shows all discovered
BBoxDB instances. The installed version of BBoxDB and the state of each instance are also shown.
Figure 7(a) shows the distribution directory and the state of the distribution regions. In the left

11

Operations

Server-Connection

Queue

TCP-Socket

Server-Connection

Queue

TCP-Socket

Server-Connection

Queue

TCP-Socket

Envelope

Envelope

Envelope

Figure 6: The implemented network package compressing mechanism.

area of the screen, all distribution groups are shown. The global index of the selected distribution
group is visualized in the middle of the screen. At the bottom of the screen, all discovered BBoxDB
instances are shown. For two-dimensional distribution groups, which use WGS84 coordinates, an
open street map overlay is also available. The distribution groups are painted on a world map as is
shown in Figure 7(b).

(a) The GUI of BBoxDB shows the distribution directory. (b) The distribution tree as an OpenStreetMap overlay.

Figure 7: The GUI of BBoxDB.

5 Evaluation

The evaluation of BBoxDB is performed on a cluster of 10 nodes. Five of these nodes (node type 1)
contain a Phenom II X6 1055T processor with six cores, eight GB of memory and two 500 GB hard
disks. Five of these nodes (node type 2) contain an Intel Xeon E5-2630 CPU with eight cores, 32
GB of memory and four 1-TB hard disks. All nodes are connected via a 1 Gbit/s switched Ethernet
network and running Oracle Java 8 on a 64 bit Ubuntu Linux.

For the evaluation, two synthetic and two real datasets with one to four dimensions are used.
The characteristics of the datasets are shown in Table 3.

TPC-H dataset (one-dimensional): This dataset is generated by the data generator of the
TPC-H benchmark [44]. The benchmark data is generated with a scale factor of 20. The table
order contains 30 000 000 entries and has a size of 3 GB. To create a point bounding box in the
one-dimensional space, the order date of the table is used. The table lineitem has a size of 15 GB
and contains 119 994 608 line items. For the range data, the range of the ship date and the receipt
date is used.

12

Dataset Data Type Elements Size

TPC-H Order Point 30 000 000 3 GB
TPC-H Line item Range 119 994 608 15 GB
OSM Tree Point 5 317 989 900 MB
OSM Road Range 52 628 226 22 GB
NYC Taxi Trip Point 69 406 520 11 GB
NYC Taxi Trip Range 69 406 520 11 GB
Synthetic Synthetic Point 2 000 000 20 GB
Synthetic Synthetic Range 2 000 000 20 GB

Table 3: Summary of the used datasets.

OSM dataset (two-dimensional): Data from the OpenStreetMap Project [38] are used for this
dataset; the spatial data of Europe are used. The dataset has a size of around 20 GB in the compact
binary encoded protocol buffer binary format. Excerpts of the dataset, such as trees (point data) or
all roads (range data), are used in the experiments. The dataset includes 5 317 989 trees (900 MB)
and 52 628 226 roads (22 GB).

NYC Taxi dataset (three-dimensional): The New York City Taxi and Limousine Commission
(NYC TLC) collects data about the beginning and end of the trips of the taxis in New York City [43].
The data of the yellow taxis between 01/2016 and 06/2016 is used in this dataset. The dataset has a
size of 11 GB and includes 69 406 520 trips. Again, the bounding box for these trips is generated in
two different ways: (1) the longitude and latitude of the pick-up point and the time of boarding are
used to create a point in a three-dimensional space. (2) The longitude and latitude of the destination
and the time of arrival are additionally used to create a rectangle in the three-dimensional space.

Synthetic dataset (four-dimensional): BBoxDB contains a data generator that generates syn-
thetic random data in any desired dimension and with any length. The data generator generates
point or hyper-rectangle bounding boxes in the specified dimension. For this dataset, 2 000 000 el-
ements with a data length of 10 000 bytes are generated; this results in a dataset of 20 GB. The
dataset is generated twice: (1) once with four-dimensional point bounding boxes and (2) once with
four-dimensional hyperrectangle bounding boxes. Each dimension of the bounding box can cover up
to 10% of the space.

5.1 Performance of the Storage Layer

BBoxDB uses SSTables to store data. In this section, the performance of the storage layer is com-
pared with other popular systems, that run inside of the Java virtual machine and don’t require
network communication. Such as (1) Oracle Berkeley DB Java edition [39] (version 7.3.7), the em-
bedded Java SQL-database (2) H2 (version 1.4.195) [25], and (3) the embedded Java SQL-database
Apache Derby (version 10.13.1.1) [2].

For this experiment, 100 000 tuples are written and read with sizes of 1-100 KB. If supported,
transactions are disabled to speed up the query performance. H2 and Derby are accessed using a
JDBC driver through prepared SQL statements. The H2 database is configured using the nio file
access method. The SSTables are accessed directly without writing the tuples on a network socket
or using any logic for data distribution. The experiment is performed on one hardware node of type
2. Figure 8(a) shows a performance comparison for write operations, while Figure 8(b) shows a
performance comparison for read operations.

It can be seen that our SSTables implementation provides a very fast storage engine. In most
cases, the storage engine is faster than the other evaluated software. But it is important to keep in
mind, that our SSTables implementation is a very simple data structure. Features such as transac-
tions or locking, which are supported by all other competitors, are not supported. H2 and Derby
have to process SQL queries which generates some overhead compared to direct data access. In
addition, these databases support a rich data model and features such as joins or secondary indices.
These features are not provided by the SSTables implementation, which makes the application pos-

13

 0.1

 1

 10

 100

 1000

 10000

1024 5120 10240 51200 102400

E
x
e
c
u
ti
o
n
 t

im
e
 [

s
e
c
]

Tuple size [byte]

Write performance of storage engines and databases

Berkeley DB
H2

Derby
BBoxDB

(a) Comparison of the write performance.

 0.1

 1

 10

 100

1024 5120 10240 51200 102400

E
x
e
c
u
ti
o
n
 t

im
e
 [

s
e
c
]

Tuple size [byte]

Read performance of storage engines and databases

Berkeley DB
H2

Derby
BBoxDB

(b) Comparison of the read performance.

Figure 8: Comparison of Java based databases / storage engines and the storage engine of BBoxDB.

sibilities limited. Other databases that employ SSTables as storage engine (like LevelDB [30]) show
a similar read and write performance compared to traditional SQL based databases [31].

5.2 Efficiency of the Network Package Compression

In this experiment, the efficiency of the compression of network packages is examined. The result of
the experiment is given in Figure 9. The compression rates of the point and the range versions of
the datasets are almost identical. Therefore, only one version of each dataset is plotted in the figure.

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

%
 o

f
th

e
 s

iz
e
 o

f
th

e
 u

n
c
o
m

p
re

s
s
e
d
 d

a
ta

 s
e
t

Packages per compressed envelope

Efficiency of compressing multiple insert operations

TPC−H (Point)
OSM (Point)

NYC Taxi (Range)
Synthetic (Range)

Figure 9: Efficiency of compressing multiple insert operations.

It can be seen that all datasets expect the synthetic dataset can be compressed with a higher ratio
when more packages are compressed at once. The datasets consist of text that contains repeated
strings and can be very well compressed. The synthetic dataset consists of random data, which
contains almost no repeated strings, making it hard to compress. Only the repeated parts can be
compressed, like the header of the network package. But even for this type of data the compression
is advantageous. By compressing multiple packages, the dataset can be compressed by around 30%.

Compared to access data from memory or a local hard disk, transferring data through a computer
network is a slow task. Therefore, it is important for a distributed system to keep the amount of
data transfers small. In addition, most public cloud providers such as Amazon Web Services (AWS)
[6] or Microsoft Azure [32] only provide network connections with a fixed bandwidth.

Even the number of nodes can be scaled-up to an almost unlimited extent, the network bandwidth
of a single node is fixed. Moreover, public cloud providers only specify the bandwidth for a single

14

region2, the available bandwidth between multiple regions is not guaranteed and the traffic between
regions usually has to be paid [7].

5.3 The Sampling Size

The sample-based splitting algorithm from Section 3.4 reads some tuple samples to calculate a good
split point. The experiment of this section examines the amount of data that has to be read to find
a good split point.

First, a certain number of random samples (between 0.01% and 10%) are read from the datasets
and the split point is calculated. Then, the whole dataset is split at this point. Afterward, the size
of both distribution regions is compared. The experiment is repeated 50 times for every sample size,
Figure 10 depicts the average results of this experiment.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.01 0.1 1 10

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 i
n
 %

Size of the sample in %

The size of the sample and the resulting error

TPC−H (Point)
TPC−H (Range)

OSM (Point)
OSM (Range)

Taxi (Point)
Taxi (Range)

Synthetic (Point)
Synthetic (Range)

Figure 10: The sampling size and the resulting difference on a region split.

It can be seen, that a small sampling size is sufficient to find a good split point. Reading 0.1%
finds a split point with a standard deviation of 1%. Reading 1% of the dataset lowers the standard
deviation to 0.5%. As also can be seen in the figure, the standard deviation is almost independent
of the used dataset. In BBoxDB, 0.1% of the data of a distribution region is used as a sample, for
finding a good split point.

5.4 Distribution Region Size

This experiment examines how the K-D Tree partitions the data of the datasets. The datasets are
read and the data are inserted into the K-D Tree. The tree is split as soon as a region contains more
than a fixed size of elements. The experiment is executed in two different variations: (1) all elements
are of the same object class (e.g., the trips of a taxi) and (2) the elements consist of different object
classes (e.g., roads and trees).

5.4.1 Similar Object Classes

The results of this experiment are shown in Table 4, the elements of the datasets can be found in
Table 3. The Figures 11 and 12 show the size of the distribution regions for some selected datasets
and distribution region sizes. It can be seen that BBoxDB can split all datasets into distribution
regions with a desired maximum size. The number of point elements does not change during the
split task. Range data has to be duplicated, if an object belongs to more than one region. This
leads to more elements after the split.

We compare BBoxDB with other approaches that use a static grid to handle spatial data, like
SJMR [45] or Distributed Secondo [34]. To perform a spatial-join, they use a modified version of

2A region or an availability zone is a part of the cloud that is isolated from other parts against failures such as
power or network outages.

15

 0

 20000

 40000

 60000

 80000

 100000

 0 5 10 15 20 25 30

E
le

m
e
n
ts

Distribution Region

Synthetic point data − Max 100000 elements per distribution region

(a) Four-dimensional point data.

 0

 100000

 200000

 300000

 400000

 500000

 0 10 20 30 40 50 60

E
le

m
e
n
ts

Distribution Region

Synthetic range data − Max 500000 elements per distribution region

(b) Four-dimensional range data.

Figure 11: The size of the four-dimensional distribution regions in BBoxDB.

 0

 200000

 400000

 600000

 800000

 1000000

 0 10 20 30 40 50 60 70 80 90

E
le

m
e
n
ts

Distribution Region

Taxi point data − Max 1000000 elements per distribution region

(a) Three-dimensional point data.

 0

 1000000

 2000000

 3000000

 4000000

 5000000

 0 10 20 30 40 50 60 70 80 90

E
le

m
e
n
ts

Distribution Region

Taxi range data − Max 5000000 elements per distribution region

(b) Three-dimensional range data.

Figure 12: The size of the three-dimensional distribution regions in BBoxDB.

the partition based spatial-merge join [40] algorithm. An n-dimensional grid is created to partition
the space into tiles. The input data is decomposed on the basis of the tiles. To handle the partition
skew, the number of tiles is much higher than the available number of query processing nodes. To
achieve this, in Distributed Secondo a hash function is applied to the tile numbers and the
content of multiple tiles is merged into fewer units of work (UOWs). These UOWs are processed
in parallel, independently by multiple nodes. Distributed Secondo uses 64 units of work per
available query processing node. Table 5 show the size of the UOWs for the datasets. Two different
grid sizes are used for every dataset: (1) big tiles to minimize the needed duplicates for range data
and (2) small tiles to handle dense areas. To calculate the standard deviation (σ), the tiles mapped
are mapped to 384 UOWs, which is used by a Distributed Secondo installation with 6 query
processing nodes and 64 OUWs per query processing node.

It can be seen in the Figures 13 and 14 that very populated and almost empty UOWs exist.
Since the grid is a static structure, more dense regions (e.g., a popular start place like an airport
in the taxi dataset) cannot be split dynamically. It also can be seen, that objects that are part of
multiple tiles needs to be duplicated. When the cells become smaller, one object belongs to more
tiles and the number of stored elements increases. For example, the number of stored elements for
the tpc-h (range) and synthetic (range) dataset increases sharply, when more tiles are used.

In summary, the dynamic approach, used by BBoxDB, generates more balanced partitions than
the static cell-based approach used by systems like Distributed Secondo. In addition, less data
duplication is needed.

16

Dataset Max Needed Total σ
size regions elements

TPC-H (Point) 5 000 000 32 119 994 608 52 829
TPC-H (Point) 1 000 000 134 119 994 608 124 927
TPC-H (Range) 20 000 000 11 174 040 906 2 346 217
TPC-H (Range) 10 000 000 69 622 928 594 1 015 005
OSM (Point) 100 000 77 5 317 989 14 448
OSM (Point) 50 000 159 5 317 989 7 314
OSM (Range) 5 000 000 15 52 656 507 589 472
OSM (Range) 1 000 000 74 52 708 915 162 186
Taxi (Point) 5 000 000 17 69 406 520 711 407
Taxi (Point) 1 000 000 96 69 406 520 69 669
Taxi (Range) 10 000 000 31 211 963 948 1 221 402
Taxi (Range) 5 000 000 92 332 674 737 783 975
Synthetic (Point) 200 000 16 2 000 000 6 551
Synthetic (Point) 100 000 32 2 000 000 3 694
Synthetic (Range) 500 000 60 23 862 525 62 477
Synthetic (Range) 200 000 1 739 315 526 514 17 385

Table 4: The size of the distribution regions in BBoxDB.

5.4.2 Different Object Classes

The TPC-H and the OSM dataset consist of different object classes. In the TPC-H dataset we have
the orders and the line items; in the OSM dataset we have roads and trees. Both object classes
are also loaded into BBoxDB in this experiment and the distribution of the objects are examined.
The result can be seen in Table 6. The experiment confirms that BBoxDB can also create multi-
dimensional shards for different object classes. The data that are partitioned in that way can be
used to execute joins efficiently only on locally stored data. For example, the table lineitem from
the TPC-H dataset is partitioned using the receipt date and ship date; the data from the table order
is partitioned using the order date. An equi-join can be used to find all orders that are shipped on
the order date. The data from the OSM dataset are partitioned using the longitude and latitude. A
spatial-join on this data can be used to find all trees that belong to the roads in the dataset3.

5.5 Insert Performance

This experiment examines, how an increasing amount of BBoxDB instances can be used to improve
the insert performance. The datasets are written to a BBoxDB cluster tuple per tuple. Between the
experiments, the amount of available BBoxDB instances is increased from one to ten instances. The
first five BBoxDB instances are executed on the hardware nodes of type 2; the last five instances
are executed on hardware nodes of type 1. During the insert, up to 1000 futures can be unfinished
while inserting multiple tuples in parallel (see Section 4.2).

The result of the experiment is depicted in Figure 15. It can be seen, that all datasets can be
imported faster with an increasing amount of BBoxDB instances. The range datasets need more
time to get imported than the point datasets. In the range datasets, several tuples need to be stored
on multiple nodes; this increases the number of needed insert operations and increases the required
time to import the whole dataset. It can also be seen, that the speed-up factor is not linear in this
experiment. This is one of the topics we would like to improve in the next BBoxDB versions (see
Section 7).

3Trees usually do not grow on roads; the tree and the road might not cover the same position in space. Therefore,
the bounding box of one of the objects needs to be extended, so that the bounding box of the road and the tree do
overlap.

17

Dataset Grid size Total elements σ

TPC-H (Point) 1 000 30 000 000 100 384
TPC-H (Point) 10 000 30 000 000 103 562
TPC-H (Range) 1 000 1 395 344 574 4 313 743
TPC-H (Range) 10 000 12 864 972 636 11 173 030
OSM (Point) 500x500 5 317 989 15 400
OSM (Point) 1000x1000 5 317 989 10 158
OSM (Range) 500x500 54 393 009 30 138
OSM (Range) 1000x1000 56 315 204 17 311
Taxi (Point) 100x100x100 69 406 520 366 311
Taxi (Point) 250x250x250 69 406 520 231 624
Taxi (Range) 100x100x100 140 181 943 3 519 900
Taxi (Range) 250x250x250 426 437 491 751 350
Synthetic (Point) 10x10x10x10 2 000 000 997
Synthetic (Point) 15x15x15x15 2 000 000 399
Synthetic (Range) 10x10x10x10 683 750 980 422 485
Synthetic (Range) 15x15x15x15 2 553 677 770 858 766

Table 5: The size of the cells in a fixed grid.

Dataset Max Needed Total σ
size regions elements

TPC-H 20 000 000 15 235 654 217 1 317 229
TPC-H 10 000 000 84 776 202 632 672 428
OSM 5 000 000 15 57 973 871 672 997
OSM 1 000 000 88 58 035 964 140 051

Table 6: The size of the distribution regions with different object classes.

6 Related Work

This section presents similar works; these works are explained below in greater detail. Table 7
compares the features of the related work with BBoxDB.

Supports Supports Supports Supports Supports the
System multi-dimensional region updates dynamic same distribution

data data redistribution for multiple tables

GFS/HDFS no no append only yes no
HBASE no no yes yes no
Cassandra no no yes no yes
ElasticSearch 2d yes yes limited no
GeoCouch 2d no yes limited no
MD-HBase any no yes yes no
Distributed SECONDO any yes yes no yes
Spatial Hadoop 2d yes no no yes
BBoxDB any yes yes yes yes

Table 7: Features of the systems described in the related work section.

Distributed Systems for BigData. The Google File System (GFS) [21] and its open source
implementation Hadoop File System (HDFS) are distributed file systems. HDFS is used by a wide
range of applications like Hadoop [3] or HBase. Data is split up into chunks and stored on chunk
servers. Chunks can be replicated onto multiple chunk servers. HFS/HDFS are a append only
filesystem, written data can not be changed without rewriting the whole file. Both systems distribute
data based on the generated chunks. BBoxDB instead uses the location of the data in a n-dimensional
space for the placement. This allows one to create locality for adjacent data.

Apache Cassandra [29] is a scalable and fault tolerant NoSQL-Database. A logical ring represents
the value range of a hash function. Ranges of the ring are assigned to different nodes. It is assumed

18

 4900

 5000

 5100

 5200

 5300

 5400

 5500

 5600

 0 50 100 150 200 250 300 350

E
le

m
e
n
ts

Distribution Region

Synthetic point data − On a 25x25x25x25 grid

(a) Four-dimensional point data.

32000000

34000000

36000000

38000000

40000000

42000000

44000000

46000000

 0 50 100 150 200 250 300 350

E
le

m
e
n
ts

Distribution Region

Synthetic range data − On a 25x25x25x25 grid

(b) Four-dimensional range data.

Figure 13: Using a static grid to partition the four-dimensional datasets.

 0

 200000

 400000

 600000

 800000

 1000000

 1200000

 0 50 100 150 200 250 300 350

E
le

m
e
n
ts

Distribution Region

Taxi point data − On a 250x250x250 grid

(a) Three-dimensional point data.

 0

 1000000

 2000000

 3000000

 4000000

 5000000

 6000000

 7000000

 0 50 100 150 200 250 300 350

E
le

m
e
n
ts

Distribution Region

Taxi range data − On a 250x250x250 grid

(b) Three-dimensional range data.

Figure 14: Using a static grid to partition the three-dimensional datasets.

that this hash function can distribute the data uniformly across the logical ring. If that is not
possible, the logical ring becomes unbalanced. Cassandra does not rebalance data automatically;
unbalanced data has to be rebalanced manually. BBoxDB redistributes the data dynamically.

Apache HBase [4] is a KVS built on top of HDFS; it is the open source counterpart of BigTable
[14]. HBase uses range partitioning to assign key ranges (regions) to nodes. The information
regarding which server is alive and which server is responsible for which region is stored in Zookeeper.
When a region becomes too large, it is split into two parts. The split of the region is created based on
the key of the stored data. BBoxDB instead uses the location of the data for the distribution which
results in inherently multi-dimensional join-partitioned regions. Additionally, BBoxDB supports
distribution groups which ensures, that a set of tables is distributed in the same manner. In HBase
the tables are distributed individually.

NoSQL Databases with Support for Spatial Data. MongoDB [33] is a document-oriented
NoSQL database. Documents are represented in JSON. The database also supports Geodata, which
is encoded as GeoJSON. Queries can be used to locate documents, that are covered or intersected
by a given spatial object. In contrast to BBoxDB, the geodata cannot be used as a sharding key.
Also, MongoDB supports only two-dimensional geodata.

ElasticSearch [15] is a distributed search index for structured data. The software supports the
handling of geometrical data. Types such as points, lines or polygons can be stored. The data
distribution is based on Quad-Trees or GeoHashing [20]. Querying data that contains or intersects
a given region is supported. In contrast to BBoxDB, only two-dimensional data is supported.

19

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9 10

T
im

e
 [

s
e
c
]

BBoxDB instances

Time to import the datasets

TPC−H (Point)
TPC−H (Range)

OSM (Point)
OSM (Range)

NYC Taxi (Point)
NYC Taxi (Range)
Synthetic (Point)

Synthetic (Range)

Figure 15: Importing the datasets on a varying amount of BBoxDB instances.

GeoCouch [19] is a spatial extension for the NoSQL database Apache CouchDB [1]. It allows
executing bounding box queries on spatial data. CouchDB does not support the re-sharding of
existing data. When a database is created, the user has to specify how many shards should be
created. When the database grows, these shards can be stored on different servers. The database
can not be scaled out to a higher number of nodes than the number of shards, specified at the
creation of the database. BBoxDB, in contrast, allows to re-shard the database on any number of
nodes.

MD-HBase [35] is an index layer for n-dimensional data for HBase. The software adds an index
layer over the KVS HBase. MD-HBase employs Quad-Trees and K-D Trees together with a Z-Curve
to build the index. BBoxDB, in contrast, directly implements the support for n-dimensional data.
Also, BBoxDB can handle data with an extent and introduces the concept of distribution regions,
which is essential for efficient spatial-join processing. MD-HBase is the most similar related work,
but the source code is not publicly available. The authors have published Tiny MD-HBase [42]–a
basic version that illustrates the key concepts of the MD-HBase paper. But this version is very simple
and can only handle small datasets. Therefore, we could not present a performance evaluation of
this software in this paper.

Distributed SECONDO [34] employs the single computer DBMS SECONDO [22] as a query pro-
cessing engine and Apache Cassandra as a distributed and highly available data storage. Distributed
SECONDO uses a static grid-based approach to partition spatial data. The read repair approach of
Cassandra reads all replicates of a tuple on read operations, which causes network traffic even when
only locally stored data is read. BBoxDB, in contrast, supports dynamical data partitioning, which
leads to an equal data distribution across the nodes. Additionally, data locality can be exploited;
reading local data does not create network traffic.

Spatial Hadoop [17] enhances Hadoop with support for spatial data. Operations like spatial
indexing or spatial joins are supported. The software focuses on the processing of spatial data.
Pigeon [16] is a set of user-defined functions, which allows to use the features of Spatial Hadoop
in Pig Latin [36] scripts. As in most Hadoop/HDFS based solutions, modifying stored data is not
supported. BBoxDB allows the modification of stored data. In addition, BBoxDB supports any
dimensional data.

7 Conclusions and Future Work

In this paper, we presented the version 0.5.0 of BBoxDB, a key-bounding-box-value store. The system
is capable of handling multi-dimensional big data; distribution regions are created dynamically based
on the stored data, and are spread on different servers. BBoxDB supports data replication and does
not provide a single point of failure. The software is licensed under the Apache 2.0 license and
available for download from the website of the project [9].

20

In the upcoming versions, we plan to enhance the compactification tasks and store a certain
number of old versions of a tuple. This data could be used to make the history of a tuple available.
For example, if the position of a car is stored, it could be useful to get all versions (the positions)
of this tuple of the last hour. The experiments have shown that BBoxDB is capable of splitting
various datasets into almost equal-sized distribution regions and spread them across various nodes.
In addition, the experiments have shown that the performance of the BBoxDB storage layer is
fast. We plan to implement performance counters (e.g., amount of unflushed Memtables or received
network operations per second) to get more insights about the behavior of the system. BBoxDB was
examined on a cluster with 10 nodes; we plan to execute more experiments in a cluster with more
nodes.

References

[1] Website of the Apache CouchDB project, 2017. http://couchdb.apache.org/ - [Online; ac-
cessed 03-Jun-2017].

[2] Website of the derby database, 2017. https://db.apache.org/derby/ - [Online; accessed
03-Jun-2017].

[3] Website of Apache Hadoop project. http://hadoop.apache.org/, 2017. [Online; accessed
15-Oct-2017].

[4] Website of Apache HBase. https://hbase.apache.org/, 2017. [Online; accessed 03-Jul-2017].

[5] Apache software license, version 2.0, 2004. http://www.apache.org/licenses/ - [Online;
accessed 15-May-2017].

[6] Amazon Web Services. https://aws.amazon.com, 2017. [Online; accessed 15-Jun-2017].

[7] Amazon Web Services - Regions and Availability Zones, 2017. http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/using-regions-availability-zones.html - [Online; accessed
15-May-2017].

[8] H.C. Baker and C. Hewitt. The incremental garbage collection of processes. In Proceedings of
the 1977 Symposium on Artificial Intelligence and Programming Languages, pages 55–59, New
York, NY, USA, 1977. ACM.

[9] Website of the BBoxDB project. http://bboxdb.org, 2017. [Online; accessed 03-Jul-2017].

[10] BBoxDB at the maven repository, 2018. https://maven-repository.com/artifact/org.

bboxdb - [Online; accessed 03-Jan-2018].

[11] J.L. Bentley. Multidimensional binary search trees used for associative searching. Commun.
ACM, 18(9):509–517, September 1975.

[12] B.H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, 1970.

[13] M. Burrows. The chubby lock service for loosely-coupled distributed systems. In Proceedings of
the 7th Symposium on Operating Systems Design and Implementation, OSDI ’06, pages 335–350,
Berkeley, CA, USA, 2006. USENIX Association.

[14] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R.E. Gruber. Bigtable: A distributed storage system for structured data. ACM Trans.
Comput. Syst., 26(2):4:1–4:26, June 2008.

[15] Website of Elasticsearch. https://www.elastic.co/products/elasticsearch/, 2017. [On-
line; accessed 03-Jul-2017].

21

[16] A. Eldawy and M.F. Mokbel. Pigeon: A spatial mapreduce language. In IEEE 30th Interna-
tional Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4,
2014, pages 1242–1245, 2014.

[17] A. Eldawy and M.F. Mokbel. SpatialHadoop: A MapReduce Framework for Spatial Data. In
31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea,
April 13-17, 2015, pages 1352–1363, 2015.

[18] R.A. Finkel and J.L. Bentley. Quad trees a data structure for retrieval on composite keys. Acta
Inf., 4(1):1–9, March 1974.

[19] Website of GeoCouch. https://github.com/couchbase/geocouch, 2017. [Online; accessed
03-Jul-2017].

[20] The Wikipedia article about Geohashing. https://en.wikipedia.org/wiki/Geohash, 2017.
[Online; accessed 03-Jul-2017].

[21] S. Ghemawat, H. Gobioff, and S.T. Leung. The google file system. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages 29–43, New
York, NY, USA, 2003. ACM.

[22] R.H. Güting, T. Behr, and C. Düntgen. Secondo: A platform for moving objects database
research and for publishing and integrating research implementations. IEEE Data Eng. Bull.,
33(2):56–63, 2010.

[23] R.H. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.

[24] A. Guttman. R-trees: A dynamic index structure for spatial searching. SIGMOD Rec., 14(2):47–
57, June 1984.

[25] Website of the H2 database, 2017. http://www.h2database.com/html/main.html - [Online;
accessed 03-Jun-2017].

[26] P. Hunt, M. Konar, F.P. Junqueira, and B. Reed. Zookeeper: Wait-free coordination for
internet-scale systems. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference, USENIXATC’10, pages 11–25, Berkeley, CA, USA, 2010. USENIX As-
sociation.

[27] The class MappedByteBuffer of the Java API, 2017. https://docs.oracle.com/javase/7/

docs/api/java/nio/MappedByteBuffer.html - [Online; accessed 03-Jun-2017].

[28] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin. Consistent hashing
and random trees: Distributed caching protocols for relieving hot spots on the world wide web.
In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC
’97, pages 654–663, New York, NY. USA, 1997. ACM.

[29] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35–40, April 2010.

[30] Website of the LevelDB project, 2017. http://leveldb.org/ - [Online; accessed 03-Jun-2017].

[31] Benchmarks of the LevelDB project, 2017. http://www.lmdb.tech/bench/microbench/

benchmark.html - [Online; accessed 03-Jun-2017].

[32] Microsoft Azure. https://azure.microsoft.com/, 2017. [Online; accessed 15-Jun-2017].

[33] Website of MongoDB project. https://www.mongodb.com/, 2017. [Online; accessed 03-Jul-
2017].

22

[34] J.K. Nidzwetzki and R.H. Güting. Distributed SECONDO: A highly available and scalable
system for spatial data processing. In Advances in Spatial and Temporal Databases - 14th
International Symposium, SSTD 2015, Hong Kong, China, August 26-28, 2015. Proceedings,
pages 491–496, 2015.

[35] S. Nishimura, S. Das, D. Agrawal, and A.E. Abbadi. Md-hbase: A scalable multi-dimensional
data infrastructure for location aware services. In Proceedings of the 2011 IEEE 12th Interna-
tional Conference on Mobile Data Management - Volume 01, MDM ’11, pages 7–16, Washing-
ton, DC, USA, 2011. IEEE Computer Society.

[36] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: A not-so-foreign lan-
guage for data processing. In Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’08, pages 1099–1110, New York, NY, USA, 2008. ACM.

[37] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree (lsm-tree). Acta
Inf., 33(4):351–385, June 1996.

[38] Website of the Open Street Map Project, 2017. http://www.openstreetmap.org - [Online;
accessed 15-May-2017].

[39] Oracle Berkeley DB Java Edition, 2017. http://www.oracle.com/technetwork/database/

berkeleydb/overview/index-093405.html - [Online; accessed 03-Jun-2017].

[40] J.M. Patel and D.J. DeWitt. Partition based spatial-merge join. SIGMOD Rec., 25(2):259–270,
June 1996.

[41] H. Samet. Foundations of Multidimensional and Metric Data Structures (The Morgan Kauf-
mann Series in Computer Graphics and Geometric Modeling). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2005.

[42] The Tiny MD-HBase project on Github, 2017. https://github.com/shojinishimura/Tiny-
MD-HBase - [Online; accessed 15-May-2017].

[43] New York City - Taxi and Limousine Commission - Trip Record Data, 2017. http://www.nyc.
gov/html/tlc/html/about/trip_record_data.shtml - [Online; accessed 15-May-2017].

[44] TPC BENCHMARK H (Decision Support) Standard Specification, 2017. http://www.tpc.

org/tpch/ - [Online; accessed 15-May-2017].

[45] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. SJMR: Parallelizing spatial join with MapReduce
on clusters. In Proceedings of the 2009 IEEE International Conference on Cluster Computing,
August 31 - September 4, 2009, New Orleans, Louisiana, USA, pages 1–8, 2009.

23

	Nidzwetzki_Gueting_BBoxDB_Titelblatt
	Nidzwetzki_Gueting_BBoxDB_Text

