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Abstract 

Let V(S) be an abstract Voronoi diagram, and Jet H be an un­
bounded simple curve that visits each of its regions exactly once. Sup­
pose that each bisector B(p, q), where p and q are in S, intersects H 
only once. We show that such a "Hamiltonian" diagram V(S) can 
be constructed in linear time, given the order of Voronoi regions of 
V(S) along H. This result generalizes the linear time algorithm for 
the Voronoi diagram of the vertices of a convex polygon. We also 
provide, for any 6 > log60129 2, an O(n6)-time parallelization of the 
construction of the V(S) optimal in the time-processor product sense. 

Key words: Computational geometry, Voronoi diagrams, abstract Voronoi 
diagrams, convex polygons 

1 Introduction 

The Voronoi diagram of a set S of n sites is one of the most useful structures 
in computational geometry. lt partitions the plane into regions, one to each 
site p in S containing all points that are closer to p than to any other 
site in S. Shamos and Hoey (15] proved the construction of the Euclidean 
Voronoi diagram tobe of complex.ity 0( n log n ), giving a divide-and-conquer 
algorithm. Later, Fortune [9] introduced an 0( n log n) sweep line algorithm, 
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and Clarkson and Shor [3] presented a randomized incremental construction 
technique. 

Voronoi diagrams can be generalized in many ways. Unifying concepts 
have been suggested by Edelsbrunner and Seidel [8] and Klein [11]. In the 
latter approach, the definition "point x is closer to site p than to site q" is 
replaced by "point x lies on the p-side of the bisector, B(p, q), of p and q", 
this way abstracting from the concepts of both sites ( as physical objects) 
and distance. For the resulting dass of abstroct Voronoi diagrams an optimal 
divide-and-conquer algorithm was given in (11], that works if the bisector 
of the two sets of sites generated by the divide step does not contain loops. 
An 0( n log n) randomized algorithm that works without such assumptions 
has been presented in Klein, Mehlhorn, and Meiser (12]. 

lt is very natural to ask whether Voronoi diagrams can be computed 
faster if more information about the position of the sites is available. A 
famous open problem mentioned by Preparata and Shamos (14] addresses 
the vertices of a convex polygon, given in cyclic order. lt has been solved by 
Aggarwal, Guibas, Saxe, and Shor [1] by providing an 0( n) algorithm. Their 
algorithm first applies the geometric lifting mapping suggested in [8] to a 
paraboloid in 3D, and then constructs the convex hull of the transformed 
points. The dual of their (lower) convex hull gives the desired Voronoi 
diagram, after taking the projection to the plane. 

This transformation makes the algorithm technically somewhat compli­
cated. Moreover, it clouds the fact that the kernel of this powerful method 
is not really based on geometric properties, as suggested by the convexity 
assumption, but only on combinatorial properties of the underlying bisector 
system, as we show in this paper. 

By working directly in the plane we are able to cover situations more 
general than convex point sets. All we need to assume is the following. The 
sites are given in the order in which their regions in V(S) are visited by an 
unbounded simple curve H that passes through each region exactly once. 
Also, for each subset S' of S, curve His assumed to visit each region ofV(S') 
not more often than once. In presence of the former condition, the latter 
is equivalent to saying that each bisector B(p, q ), where p, q E S, crosses H 
only once; see Lemma 3.1. We call a such a Voronoi diagram Hamiltonian 
with respect to H. On either side of H, its structure is that of a forest of 
binary trees (and possibly some halflines). We show that a Hamiltonian 
diagram can be computed in linear time, given the order of regions along 
H. 
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There is an easy way of creating examples of Hamiltonian diagrams. 
Let H be an unbounded curve such that for any two points p, q on H their 
Euclidean bisector B(p, q) crosses H only once. Then the Voronoi diagram of 
any finite set of points on H is Hamiltonian with respect to H. This includes 
convex curves [1], monotone histograms, as studied by Djidjev and Lingas 
[6], and convex chains of straight and circular segments TO BE CHECKED 

investigated by Yap [16), thereby generalizing previous results. 
0ur result is not restricted to the Euclidean metric. Since it holds true 

for abstract Voronoi diagrams it also works for all concrete metrics covered 
by this concept, e. g. the family of "nice" metrics described in [11]. This 
family includes all semi-algebraic convex distance functions. 

The problern of whether there exist fast parallel algorithms for the afore­
rnentioned special site configurations rnore work efficient than the known 
parallel algorithms for the general configurations ( e.g., see [5]) is also widely 
open. We are able to parallelize all the basic steps in the linear-time algo­
rithrn for the Hamiltonian diagrams ( or in the algorithm of Aggarwal et al). 
However the presence of the second recursive call which has to wait for the 
outcome of the first one slows down the time performance of our paralleliza­
tion to vaguely sublinear. In effect, we obtain the following generalization of 
our linear-time bound for the Hamiltonian diagrams: For any li > lo~129 2, 
the Voronoi diagram Hamiltonian with respect to H can be computed in 
time 0( n6 ) using 0( n1- 6 ) processors in the CREW PRAM model. 

The paper is organized as follows. After briefly introducing abstract 
Voronoi diagrams in Section 2, we prove the main result in Section 3. In 
Section 4, we provide the parallelization. Finally, in Section 5 we discuss 
examples of Hamiltonian Voronoi diagrams. 

2 Abstract Voronoi diagrams 

Abstract Voronoi diagrams are designed to match what rnost concrete Voronoi 
diagrams have in common. They are defined by means of a set S of n in­
dices p, q, ... that play the role of sites. For any subset {p, q}, where p =/: q, 
there is a simple unbounded curve B(p, q), called bisector, that partitions the 
plane into two unbounded open domains, D(p,q) and D(q,p). For technical 
reasons, we require that bisectors are homeomorphic to lines, and that any 
two of thern intersect in only finitely many connected components. Voronoi 
regions can now be defined by analogy to intersecting halfplanes. 
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Definition 2.1 Let Sand the family {B(p,q);p,q E S,p f:. q} as before. 
Then 

VR(p, S) = n D(p, q) and 
qES,p#q 

V(S) = LJ VR(p, S) n VR(q, S) 
p,qES,p:f.q 

are called the Voronoi region of p with respect to S and the Voronoi diagram 
of S, correspondingly. 

This definition is too general for describing standard Voronoi diagrams. 
Therefore, the following conditions are imposed. 

Definition 2.2 The family {B(p,q);p,q E S,p f:. q} is called admissible if 
for each subset S' of S, where IS'I ~ 3, the following hold. 

1. Each region VR(p, S') is connected. 

2. Each point of the plane either belongs to a Voronoi region VR(p, S') 
or to the Voronoi diagram V(S'). 

Definition 2.1 is due to Meiser [13]; it is more convenient than the original 
one given in [11]. The above properties are sufficient for deriving a structure 
theory, and for designing e:fficient algorithms; see [11, 12]. For simplicity, 
let us assume that any two bisectors B(p, q) and B( q, r) of three sites cross 
transversally whenever they intersect. Then the following properties are 
fulfilled that will be needed later. 

Lemma 2 .3 1. Jf B(p, q) and B( q, r) cross at point x then B(p, r) also 
passes through x. Locally at x, the Voronoi diagram V( {p, q, r}) has 
the same structure as a Euclidean diagram. 

2. B(p, q) and B( q, r) cross at most twice. Jf so, the bounded part of the 
plane they enclose belongs to at least one of D(p, q) or D(p, r). 

3. Voronoi regions do not have holes, i. e. they are simply-connected. 

See Figure 1 for an illustration and [11] for a proof. 
All semi-algebraic convex distance functions generate Voronoi diagrams 

that comply with Definitions 2.1 and 2.2. But many other concrete diagram 
types are also covered, e. g. the Euclidean Voronoi diagram of line segments, 
where two bisectors associated with the same line segment can in fact cross 
twice. 
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Figure 1: Two bisectors B(p, q) and B( q, r) cross at most twice. 

3 Constructing Hamiltonian diagrams 

Throughout this section, Jet { B(p, q ); p, q E S, p f:. q} be an admissible 
bisector system, and n = ISI. Moroeover, let H denote a simple, unbounded 
curve, homeomorphic to a line, that passes exactly once through each region 
of the abstract Voronoi diagram V(S). Necessarily, the first and the last 
regions visited by H must be unbounded. 

Lemma 3.1 The following assertions are equivalent. 

1. For each subset S' of S, IS'I ~ 2, each region of V(S') is also visited 
by H exactly once. 

2. Each bisector B(p, q), where p, q E S, crosses H exactly once. 

Proof: 1) • 2) : If B(p, q) crossed H more than once then H would visit 
the regions of either p or q in V( {p, q}) more than once. If B(p, q) and H 
were disjoint then one of the regions of p, q would not be visited at all. 
2) • 1): For each site p ES', its region can only grow as we change from S 
to S', so it will still be visited by H. Assume it is visited more than once, 
and H passes through the region of some other site q E S' in between. Then 
the same holds true in V( {p, q} ), showing that B(p, q) crosses H at least 
twice. D 
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Definition 3.2 If {B(p, q); p, q E S,p # q} and H fulfill the properties 
stated in Lemma 3.1 then V(S) is called Hamiltonian with respe.ct to H. 

Now we state the main result. 

Theorem 3.3 Let V(S) be Hamiltonian with respe.ct to H. Assume that we 
are given the sites of S in the order in which their regions are visited by H. 
Then V(S) can be computed in time O(n). 

Curve H partitions the plane into two unbounded domains. To prove 
the theorem we need only show that the part of V(S) lying in one of them, 
D, can be constructed in linear time. For simplicity, let us assume that 
there are no Voronoi vertices of degree greater than 3 ( the algorithm can be 
made to run without this assumption.) 

Lemma 3.4 V(S) n Dis a forest of halftines and binary trees with one. edge 
extending to infinity and leaves on H. 

Proof: Let the regions of p, q, r, s be consecutive on H. Between the 
regions of q and r, a Voronoi edge originates from H that is part of the 
bisector B( q, r). Either this edge extends to infinity, giving rise to a halfline 
in V(S) n D, or it crosses one of its two neighbors, say B(p, q). At the cross 
point, a new edge belonging to B(p, r) originates, due to Lemma 2.3, 1 ). 
After removing site q from S this argument can be iterated. D 

The basic idea of the construction of V(S) n D is quite simple. In the 
following discussion we are using the coloring scheme from (1], to indicate 
the relation to the transformed dual objects the algorithm presented there 
works with. 

Algorithm 1 

Input: The order of sites in S in which their regions are visited by the curve 
H. 
Output: The Voronoi diagram V(S) within the halfplane D. 

1. Choose at least a fixed percentage of sites whose regions in V(S) are 
pairwise non-adjacent, and color red the sites in this subset, R, of S. 

2. Color blue the remaining sites in B = S - R, and compute recursively 
their Voronoi diagram V(B) within D. 
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3. Construct incrementally V(S) n D from V(B) n D, inserting the red 
sites one by one. 

Note that it is legal to apply this algorithm recursively in Step 2 since 
Lemma 3.1, 1) holds for the set B. 

Lemma 3.5 Step 3 can be accomplished within time O(n). 

Proof: Since no two red regions share an edge in V ( S) we can insert the 
red sites independently, so it suffices to construct V ( B U { r}) for each r in 
R. 

We know the blue sites bi, bi+l whose regions are, on H, neighbors of 
the region of r. Thus, we can in constant time locate starting segments for 
the contour of VR( r, B U { r}) in the intervals on H covered by the regions 
of bi and bi+l in V(B); see Figure 2. 

Next we study the part of V(B) contained in VR(r,BU {r}). Certainly, 
the region of r always contains an initial piece of B(Pi, Pi+i) originating from 
a bl ue leaf / on H, because this edge is no longer present in V ( B U { r}). 
We claim that T1 = V(B) n VR(r,B U {r}) is connected. Namely, if the 
contour of VR( r, B U { r}) entered the same blue region twice, like the region 
of r3 in Figure 2, this region would become disconnected in V(B U {r})­
a contradiction to Definition 2.2. If T1 contains more than the blue edge 
originating from leaf l then it must be a binary tree. But l is the only point 
of T1 on the curve H. 

Since T1 is connected we can trace the contour of VR( r, B U { r}) in time 
proportional to the number of edges of T1, simply by walking around the 
tree ( we may have to jump at infinity if the region of r is unbounded, like 
for r2 in Figure 2). 

For the blue edges completely contained in the new region of r in V( B U 
{ r}) we charge this work to the edge itself. Each edge that is only partially 
covered by VR( r, B U { r}) gives rise to a Voronoi vertex of V( S), which gets 
charged. 

Therefore, the total cost of Step 3 is 0( n ). 0 

Leaving aside Step 1 of Algorithm 1, we would obtain the recursion 

T1(n) $ T1(qn) + Cn, 

where q < 1 bounds the maximal relative size of B. This shows that T1(n) 
is O(n). 
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Figure 2: Inserting the red sites Ti, The region of r3 cannot look as indicated, 
because the region of bu would become disconnected. 

The obvious problem is that Step 1 cannot be accomplished without 
knowing V(S) first. Therefore, Algorithm 1 is modified in the following way. 
One first chooses a suitable blue subset B and computes V(B). Then the 
knowledge of V(B) is used for identifying a crimson subset C of S-B whose 
elements do have independent Voronoi regions in V(B U C), as required in 
Step 1 of Algorithm 1, so they can be inserted in linear time, as before. For 
the remaining gamet sites G = S-(B UC), the diagram V(G) is computed 
recursively, and merged with V(B U C) into V(S). This merge step can be 
implemented to run in time 0( n) using the general method described in [11], 
Theorem 3.4.3.2, because the bisector of the site sets B U C and G does not 
contain loops. 

In the following, only the parts of the Voronoi diagrams contained in 
domain D are considered, without further mention. 

Algorithm 2 

Input: The order of sites in S in which their regions are visited by the curve 
H. 
Output: The Voronoi diagram V(S). 
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Figure 3: Si te p is colored red iff its two bisectors cross in V ( { l, m, p, q, r}). 

1. Choose a suitable blue subset B of S. 

2. Compute recursively the Voronoi diagram V(B). 

3. Using the structure of V(B), choose a crimson subset C of S-B, such 
that no two regions of crimson sites are adjacent in V(B U C). 

4. Construct incrementally V(B U C) from V(B), inserting the crimson 
sites one by one. 

5. Compute recursively the garnet Voronoi diagram V(G), where G = 
S-(BuC). 

6. Merge V(B u C) with V(G) into V(S). 

Step 4 can be carried out in linear time, according to Lemma 3.5. There­
fore, the running time of Algorithm 2 will be linear if we can ensure that in 
Step 3 at least a fixed percentage of sites becomes crimson, and that Steps 
1 and 3 can be carried out in linear time. 

Implementation of Step 1. Let l,m,p,q,r denote five sites of S whose 
regions on H are consecutive. Site p is colored red iff, in the Voronoi diagram 
V({l,m,p,q,r}), the bisectors B(m,p) and B(p,q) cross, giving rise to a 
Voronoi vertex; see Figure 3. 

Lemma 3.6 So far, no two consecutive sites have been colored red. 
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Proof: Suppose that in the sequence of consecutive sites l, m, p, q, r, s both 
p and q have been colored red. By definition, B(p, q) makes a vertex with 
its left neighbor, B(m,p), in V({l,m,p,q,r}), and with its right neighbor, 
B( q, r ), in V( { m, p, q, r, s} ). But only one of these facts can be true in 
V( { m, p, q, r} )-a contradiction! D 

In case no site has been colored red we know that V(S) consists of 
halflines only, because any Voronoi vertex of V(S) that is just above the 
leaf level in its binary tree (cf. Lemma 3.4) would also be present in one 
of the local diagrams of five sites. In this case, we can stop. Otherwise, 
there are at least two sequences of consecutive sites that have no color yet. 
Within each such sequence, every other site is colored red, in a way that 
no two consecutive sites become red. All remaining sites are colored blue; 
they form the subset B of S. Between any two successive red sites there are 
either one or two blue sites. 

Clearly, all these local computations can be clone in linear time because 
they involve only a linear number of constant size Voronoi diagrams. 

Next, we list two properties of the blue and red sites that will be used 
in Step 3. 

Lemma 3. 7 Let p, r be two successive red sites. 

1. The regions of p and r in V ( B U {p, r}) are not adjacent. 

2. The regions of p and r in V ( B U {p}) and V ( B U { r}), correspondingly, 
are disjoint. 

Proof: 1) Suppose there is one blue vertex, q, between p and r. If the 
contours of VR(p, B U {p, r}) and VR( r, B U {p, r}) have a piece of B(p, r) 
in common then B(p, q) must meet B(q, r) at a Voronoi vertex. Since both 
the predecessor of p and the successor of r are in B (p and r being red!) this 
Voronoi vertex also exists in the local diagram of these five sites. But then 
q should have been colored red at the beginning. 

In case there are two blue sites, q1 and q2 , between p and r, the bisector 
of q1 and q2 must produce a vertex with either B(p, qi) or B( q2, r ), so that 
q1 or q2 should be red. 
2) Assume that J = VR(p, B U {p}) n VR( r, B U { r}) is non-empty. If 
VR(p, BU{p}) were fully contained in VR(r, BU{r} ), so would be VR(p, BU 
{p, r} ). But this is impossible because on curve H the regions of p and r are 
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VR(p,Bu{p}) 
VR(r,Bu{r}) 

r H 

Figure 4: In V( r, B U {p, r}) there must be a Voronoi edge in J separating 
the regions of p and r. 

separated by a blue region. Therefore, I is properly contained in either con­
stituent set, as shown in Figure 4. Since the dashed area VR(p, B U {p}) - J 
must be contained in the region of p with respect to B U {p, r}, and the same 
for r, these regions must have a common border inside J, contradicting 1 ). D 

Implementation of Step 3. Lemma 3.7 does not exclude that two non­
successive red regions may be adjacent. However, one can find an indepen­
dent subset using the following cornhinatorial lernrna frorn [1). 

Lemma 3.8 There exists a constant q < 1 such that the following holds. 
Let T be an unrooted binary tree, embedded in the plane. Assume that Jor 
each leaf l of T a subtree Ti rooted at 1 is defined, such that 

1. given leaf l, one can in constant time decide if its parent node belongs 
to Ti, 

2. if l, l' are consecutive leaves in the topological ordering around T then 
Ti and T,, are disjoint. 

Then it is possibel to find, in time O(ITI), at least qlTI many leaves whose 
subtrees have a pairwise edge distance greater than one. 
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Figure 5: Selecting an isolated subtree in a group of leaves. 

Here, the edge distance between two subtrees T1, Tz, denotes the mini­
mum number of edges needed to connect a node of Ti to a node of Ti, by a 
path in T. A positive edge distance in particular implies that the subtrees 
are disjoint. 

Proof: (Sketch) If two consecutive leaves of T have the same parent node 
then one of them must have a subtree consisting only of the leaf itself, due 
to the disjointness assumption. All of these leaves are chosen. Besides such 
twin leafes, there can be groups of five leaves dangling off a spine, as shown 
in Figure 5. At least three of them, l, l', l" in the picture, are consecutive. If 
one of l, l" has a trivial subtree, we choose it. If both Ti and T111 are of size 
greater than one, then T1, is confined to the area indicated, and l' is chosen. 
D 

This lemma is now applied to the forest V( B) in the following way. For 
each pair of consecutive blue sites bi, bi+l that are not separated by a red site 
we conceptually remove the piece of B(bi, bi+i) that separates them in V(B). 
If this piece has not been a halfline, we join the two remaining Voronoi edges 
incident to its parent vertex into one; see Figure 6. 

As a result of this pruning step, there is a one-to-one relation between 
the leaves of the remaining forest, T, and the red sites. Namely, each leaf 
l of T lies in the region VR( r, B U { r}) of a unique site r E R. We as-
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Figure 6: Blue leaves not contained in a red region are pruned. With the 
others, a unique red site is associated. 

sociate with l the subtree Ti of T spanned by all vertices of T contained 
in VR( r, B U { r} ); compare the proof of Lemma 3.5 and Figure 6. Now 
Lemma 3. 7 2) guarantees the disjointness of consecutive subtrees. iFrom 
Lemma 3.8 we obtain, in linear time, a subset of leaves of T whose asso­
ciated red sites r, r', ... have the following property: no two of the regions 
VR(r, BU { r} ), VR(r', BU{r'} ), ... intersect the same blue edge of T. These 
red sites r, r', ... are now colored crimson. They forma subset C of S whose 
cardinality is at least a fixed percentage of ISI. 

Lemma 3.9 The regions of no two crimson sites are adjacent in V(BUC). 

Proof: Let c, c' be crimson. We first show that the intersection I of their 
regions VR( c, B U { c} ), VR( c', B U { c'}) is empty. Suppose this is not true. 
By the above, I does not contain any piece of T. Let e be one of the edges of 
V(B) that have been pruned because its endpoint on H does not lie in any 
red region. Its other endpoint could be contained in the region of e. g. c. But 
then e cannot pass through VR(c',BU{c'}), because V(B)U VR(c',BU{c'}) 
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Figure 7: Neither situation is possible. In the left picture, the region of bin 
V ( B U { c, } ) would occur twice on H. In the right picture, the region of b 
would become disconnected in the diagram of B U { c, c'}. 

is a tree one of whose edges originates from H. Therefore, e cannot pass 
through J either. 

This implies that J is contained in some blue region VR(b, B). On curve 
H, neither VR( c, B U { c}) nor VR( c', B U { c'}) can be fully contained in 
VR(b, B). Therefore, both regions invade VR(b, B) from the outside; see 
Figure 7. But then VR( b, B) is disconnected in V( B U { c, c'} )-a contradic­
tion to Definition 2.2. The same contradiction arises if J is empty hut the 
two regions touch each other. D 

This completes the proof of Theorem 3.3. 
Naturally, there is also a cyclic version of Theorem 3.3 which resembles 

the result in [1]. 

Theorem 3.10 Let {B(p,q);p,q E S,p :/= q} be an admissible system, and 
suppose that the subdiagram of any three sites in S contains exactly one 
Voronoi vertex. lf V(S) is known to be a tree, and if the cyclic order of 
regions at infinity is given, then V(S) can be computed in linear time. 

Proof: Analogons to the above. One has to make sure that, for each subset 
S' of S, V ( S 1

) is still a tree, in order to apply recursion. In fact, it could 
happen that, after removing one site from S, another one "brakes through" 
to the other side, so that the diagram is no longer connected. But then there 
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would be three sites whose diagram is not connected either, contradicting 
the assumption. D 

4 Parallel construction of Hamiltonian diagrams 

The presence of the second recursive call waiting for the outcome of the 
first recursive call diminishes the possibility of a direct NC parallelization 
of Algorithm 2. In this section we present a vaguely sublinear-time paral­
lelization of Algorithm 2 in the CREW PRAM model. In effect, we obtain 
the following generalization of our main result given in Theorem 3.3. 

Theorem 4.1 Let V(S) be Hamiltonian with respect to H. Assume that 
we are given the sites of S in the order in which their regions are visited by 
H. Then, for any 6 > log60129 2, V(S) can be computed in time 0( n6) using 
O(n1- 6) processors in the CREW PRAM model. 

Proof: Suppose that all the operations listed in the specification of Al­
gorithm 2 can be computed in t( n) time using 0( n/t( n)) processors in the 
CREW PRAM model. Note that at least half of the sites is colored blue and 
at least one third of them is colored red ( the minimum number of red sites 
is achieved when the primary red sites divide the site sequence into pafrs of 
uncolored consecutive sites). Also, by the proof of the combinatorial lemma 
from [1] the constant q can be set to 1/10 in Lemma 3.8. lt follows that the 
crimson set includes at least 1/30 of the input sites. Hence, we obtain the 
following recurrence on the time performance T( n) of a parallel implementa­
tion of Algorithm 2 in the CREW PRAM model with O(n/t(n)) processors: 
T(n) ~ max113<a<2/3{T(an)+ T((l -a- l/30)n)+ O(t(n))}. Assume T(n) 
tobe of the form O(nß), where ß < 1. Then, the worst case occurs when 
the difference between the argument of the first term and the argument of 
the second terrn on the right side of the recurrence is the smallest possible. 
Hence, we obtain the inequality T(n) ~ 2T(29n/60)+O(t(n)). This leads to 

loSllo/29 n · (( / ) · ) b the following estimation T( n) = 0O=i=O 2't 29 60 'n . Let 6 e any 
positive constant greater than lo~129 2. Assurne t( n) = n6• By straightfor-

ward calculations, we obtain T(n) = 1:!:~0129 n(29/60)<6
-

10
& 0 /

292)in6• Con­
sequently, we have T( n) = 0( n6) which yields the theorem thesis. 

By Brent's principle [10], it is now sufficient to show that all the opera­
tions of Algorithm 2 but for the recursive calls can be implemented in time 
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0(logk n) using 0( n/ logk n) processors, where k E {O, 1 }, in the CREW 
PRAM model. 

• Step 1: The choice of the primary red sites involves only local com­
putations and can be trivially done in constant time using a linear 
number of processors. The maximal subsequences of not yet colored 
consecutive sites can be found and then colored by parallel list ranking 
[10) in logarithmic time using 0( n/ log n) processors. 

• Step 3: The prunning of the forest V(B), identifying the twin leaves 
and choosing the ones with singleton subtrees in the prunned forest in­
volve only local computations and can be done in constant time using 
a linear number of processors. By applying parallel list ranking to the 
contracted forest obtained by deleting its leaves we can identify the 
spines as maximal paths with nodes of degree two and divide them 
into groups with five leaves. lt can be done in time 0(logn) using 
0( njlog n) processors [10]. Finally, choosing a leaf with a trivial sub­
tree or a leaf with a subtree confined to the group require only local 
computations and can be done for all groups in constant time using a 
linear number of processors. 

• Step 4: The crimson sites have independent regions in V(B U C) by 
Lemma 3.9. Therefore it is suffi.cient to construct V(Bu{ r}) in parallel 
for each r in C. The cost of the construction of V ( B U { r}) is propor­
tional to the size of the subtree T1 of the prunned forest T (see the 
discussion preceeding Lemma 3.9 and Step 3) contained in V(BU{r} ). 
The crimson sites are chosen among the red sites in Step 3 (by apply­
ing Lemma 3.8). lt follows from that all the subtrees T1 associated 
to the crimson sites r are of bounded size. Hence, this step can be 
implemented in constant time using a linear number of processors. 

• Step 5: The garnet set can be clearly computed in 0(log n) time using 
0(n/logn) processors in the CREW PRAM model, e.g., by applying 
a work-optimal logarithmic time sorting algorithm [4]. 

• Step 6: The diagrams V(B U C) and V(G) can be merged in 0(logn) 
time using 0( n/ log n) CREW PRAM processors by applying the free­
tree merging techniques due to Cole, Goodrich and 6 Dunlaing [5) (see 
the proof of Theorem 7.2 in [5]). 

• 
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5 Applications 

Theorem 3.10 directly implies the result on convex polygons proved in [1]. 
To give applications of Theorem 3.3 we leave the abstract setting and 

turn to the family of nice metrics; see [11]. Roughly, a metric d is called 
nice iff it fulfills the following three conditions. i) Two points are close 
with respect to d if and only if they are close in the standard sense, ii) 
for any two points a, c there is a third point, b, between them such that 
d(a, b) + d(b, c) = d(a, c) holds, and iii) bisectors of points are tractible. 
All semi-algebraic convex distance functions (see e. g. [11] for a definition) 
are nice; however, the dass of nice metrics allows for phenomena that do 
not occur with convex distance functions: distance need not be invariant 
under translation, shortest paths need not be straight line segments, and 
the bisectors of three points can in fact cross twice. 

If d is a metric then the d-circle of radius r centered at p is the set 
K d( r, p) = { z; d(p, z) = r}. In the sequel we assume that the bisector 
Bd(P, q) = {z; d(p, z) = d(q, z)} is always a curve (if not, one of its bound­
aries could be chosen, but we want to avoid these technical problems here.) 
Then Definitions 2.1 and 2.2 are fulfilled by the Bd(P, q ). 

Lemma 5.1 Let d be a nice metric, and let H be a simple curve homeo­
morphic to a line. Then the following assertions are equivalent. 

1. For any finite set S of points on H is the Voronoi diagram V( S) 
Hamiltonian with respect to H. 

2. Each bisector Bd(p,q), where p,q are points on H, crosses H only 
once. 

3. Each circle K d( r, p), where p is a point on H, crosses H only twice. 

4. For each point p on H, if we move away from p in either direction 
along H then the d-distance to p is strictly increasing. 

Proof: 1) {::} 2) : lf p lies on H then its region covers at least one interval 
of H. Thus, equivalence follows directly from Definition 3.2. 
3) {::} 4): This is obvious. 
2) => 3): Suppose that H runs through three points p,q,r on Kd(r,v). lts 
center, v is a Voronoi vertex in V({p,q,r}) lying on H. Since the simple 
curve H must visit each of the three sites it has to cross a Voronoi edge at a 
point z different from v. Thus, the corresponding bisector crosses H twice, 
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at v and atz. 
4) =} 2) : As we walk from p to q along H, the distance to p is strictly 
increasing from zero to d(p, q ), while the distance from q is strictly decreas­
ing from d(p, q) to zero. Both functions are continuous. Thus, exactly one 
point of Bd(p, q) will be crossed. Each point x on the unbounded piece of 
H that connects p to infinity and does not contain q is closer to p than to 
q. Namely, if one walks from p towards q then the distance to x increases. 
Therefore, this part of H does not cross the bisector. 0 

Definition 5.2 Let H be as in Lemma 5.1. Then H is called Hamiltonian 
with respect to d. 

Corollary 5.3 IJ d is a nice metric, and if n points are given in their 
order on a Hamiltonian curve with respect to d, then their Voronoi diagram 
based on d can be computed in time 0(n). Also, for any 6 > log60; 29 2, the 

Voronoi diagram can be computed in time O(n6) using 0(n1- 6) processors 
in the CREW PRAM model. 

Proof: Theorems 3.3, 4.1 and Lemma 5.1 • 
For the Euclidean distance, examples of Hamiltonian curves are the 

graphs of functions J(x) = y where f is convex or, more generally, mono­
tone. This generalizes the results of [1] and [6], because one can simply split 
e. g. the contour of a convex polygon into four parts satisfying this con­
dition, compute their diagrams separately, and merge them in linear time. 
0ther exam ples are the graphs of smooth functions J satisfying I J' ( x) 1 ~ 1, 
like the function sin x. 

6 Open Problems 

In the proof of Theorem 3.3 it was very important that for each subset S' of 
S each region of V ( S') occurred on H only once, so we could apply recursion. 
There are cases where this property cannot be recursively maintained. An 
important example is the Voronoi diagram of the edges of a simple polygon 
P, inside P (also known as the skeleton, or medial axis structure, of P). The 
diagram is tree-shaped, and its regions are in a natural way ordered by the 
boundary. Currently, there is a deterministic 0( n log n) algorithm by Yap 
[17] that allows to compute the diagram of an arbitrary set of line segments, 
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and a randomized O(nlog• n) algorithm by Devillers [7). Whether or not a 
faster deterministic solution is possible remains open. 

Also, the problem of dessigning faster parallel algorithms for Hamiltonian 
diagrams work optimal or nearly work is widely open. 
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