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Abstract 

Structurally object-oriented database sys­
tems [Di86] are a new dass of dedicated 
data storage systems which are intended 
to be a basis of CAD, CASE, and other 
design environments which shall support 
large development teams. 

This paper presents a concept for dis­
cretionary access controls for structurally 
object-oriented database systems. lt ad­
dresses two particular problems: 

A distinguishing feature of the data 
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model of structurally object-oriented data­
base systems are complex objects. Com­
plex objects are nested and can overlap, 
i.e. they can share campanents. Arbitrary 
complex objects should be units af access 
control. Shared companents cause partic­
ular prablems because the abjects in which 
they are contained might have cantradict­
ing access rights. This problem is solved 
by introducing certain constraints an the 
way in which access rights can be granted 
or denied. 

A second major problem results from 
the arganizatian af development projects 
which use design environments: typically, 
this is a hierarchy of nested groups. Our 
concept is group-ariented in the sense 
that it supports such subgroup hierarchies. 
Two different interpretations af a subgroup 
structure, termed graup paradigms, are 
supported. Under one paradigm, a group 
is used ta give several users the same 
rights, whereas under the other paradigm 
a group has the set of rights which corre­
sponds to the task af the group. 

Twa final noteworthy features af aur 
concept are that it employs a 4-valued logic 
which supports explicit denials of access 
and that it makes provisian for distribu­
tion of the database. 

Keywords: discretionary access con­
trols, object-oriented databases, distribut­
ed databases, complex objects, shared 
objects, hierarchical groups, group para­
digms, denial of access 
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1 Introduction 

Design environments for CAD, CASE or 
similar applicatian domains impose new 
requirements an their underlying data 
management system. Canventional data­
base systems or fi.le systems do not fulfill 
these requirements. This has led ta the de­
velopment of a new dass af data manage­
ment systems termed abject-oriented or 
nan-standard database management sys­
tems. 

This paper deals with discretianary ac­
cess cantrols for one particular type of such 
database systems, termed structurally 
object-oriented [Di86]. More specifi­
cally, we will mainly refer to systems which 
have been designed to be a basis of soft­
ware development environments. We will 
use the term object management sys­
tem (OMS) to refer to such database 
management systems and the term object 
bas·e to refer to the database managed by 
the OMS. The main features of such OMSs 
will be presented in section 2.2.1. 

We understand that an environment 
and its OMS shall support large devel­
apment projects, which are organized in 
many working groups and roles. In such 

· environments ( as opposed to single-user 
enviranments), access controls are indis­
pensable. OMSs will not be accepted by 
industry unless they provide access con­
trols which are as powerful as those known 
from canventional database systems or for­
merly used project libraries. 

This paper deals only with discre­
tionary access controls (DAC), not 
with mandatory access controls. DAC are 
means ta restrict access ta data granules 
an the basis of the identity of subjects 
and/ar graups to which the subjects be­
lang. The controls are discretionary in 
the sense that certain subjects ("owners") 
of an data granule can determine whether 
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and how other subjects can access this 
data granule. 

DAC concepts for conventional data­
base management or file systems, e.g. con­
ventional access control lists or views, are 
not adequate for OMSs because they do 
not meet the novel conditions for, and re­
quirements on, access controls in OMSs1 : 

• There is a hierarchy of nested, over­
lapping complex objects. A complex 
object, e.g. a document, a parse tree, 
a module hierarchy, or parts thereof, 
is the typical unit of access in soft­
ware development environments, ra­
ther then a set of atomic objects which 
is specified by a query. Therefore, 
each complex object must be a gran­
ule of access control. 

Most OMSs are, in fact, oriented 
towards navigational access and do 
not have a powerful descriptive query 
language which could be a basis 
for defining nested data-dependent 
views2 • The concepts presented 
here are specifically designed for such 
OMSs. 

• Designenvironments are mostly based 
on workstations (with or without local 
disc) and servers which are connected 
by a local area network. Distribution 
of data in such architectures must be 
supported. 

• The user groups are hierarchically or­
ganized. Such hierarchies must be 
supported; we call such access controls 
group-oriented. Users and user 
groups cooperate, rather than com­
pete, in such environments. There­
fore, access controls must support 
cooperative working. Nonetheless, 

1See also [EURAC89, DiHP88, GPI89a, GrS87, 
Ke88, Ke89, Pe89]. 

2One main reason for this situation stems from 
the particular circumstances of distribution. See 
also sections 2.2.1 and 2.5.1. 
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groups can be in conflict in the sense 
that they correspond to different roles 
which must not be executed at the 
same time by one user. 

The resulting requirements on access 
controls are discussed in more detail in sec­
tion 2. In all, access controls for OMSs 
present a new challenge and require new 
approaches. 

This paper presents a concept for ac­
cess controls in OMSs which meets the re­
quirements mentioned above. This con­
cept has been developed for one particular 
OMS, namely PCTE3 [PCTE87, PCTE88, 
PCTE+88]. PCTE is specifically designed 
to be a basis for software development 
environments and differs from other such 
OMSs in several aspects: it has external 
schemata, its programrning interface is up­
wards cornpatible with the UNIX file sys­
tern and it is transparently distributed. 

However, we present our concepts on a 
level which abstracts from most details of 
the data model of PCTE (or other OMSs) 
because they are not very relevant here and 
because our concepts are actually applica­
ble to a wide range of structurally object­
oriented OMSs for CASE and other appli­
cation domains. Of course, detailed fea­
tures of other OMS data models may ne­
cessitate certain adaptations. 

Access control concepts often address 
data integrity, too. Structurally object­
oriented OMSs differ considerably in their 
data model inherent integrity constraints 
and their features for specifying integrity 
constraints. The concept presented here 
does not address data integrity, but can 
be extended in this direction for certain 
classes of OMSs. 

The rest of this paper is organized as 
follows: 

3PCTE is the acronym of "A Basis for a 
Portable Common Tool Environment" 
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Section 2 introduces for several problem 
areas background information, definitions, 
basic features of our concept, and a sum­
mary of the main problems of this area. 

Section 3 introduces a central notion of 
our concept, access right determinations. 

Section 4 discusses how the group struc­
ture is to interpreted. lt is shown that 
two different interpretations, termed group 
paradigms, must be supported. 

Section 5 discusses the particular prob­
lems due to complex objects and sharing 
of components. The proposed solution is 
based on a consistency constraint for rights 
on nested data granules. 

Section 6 presents the list of access 
modes. 

Section 7 compares our approach with 
other proposals and surveys an extension, 
namely type level access controls. 

2 Problem Analysis and 
Basic Definitions 

This section discusses several problem ar­
eas which are particularly relevant for 
DAC in OMSs. For each area, we will 
(1) describe relevant aspects of the "real 
world situation" in OMSs or software de­
velopment environments, (2) define related 
terminology, (3) introduce basic features 
of our DAC concept, and (4) summarize 
the most important problems. These steps 
are not strictly sequential, because prob­
lern analysis and design are - as usual -
interleaved. 

We start with defining several general 
notions of DAC (adapted from (DOD83, 
Hs87, ITS89]). 

2.1 Basic Notions of DAC 

A ( data) granule is a passive entity which 
contains or receives information. Access 
to a granule potentially implies access to 
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the information it contains. Normally, the 
term 'object' is used instead of 'granule'; 
however, this would be confusing here since 
objects are not the only granules in DAC 
for OMSs. 

A subject is an active entity, e.g. aper­
son or a device, that causes information to 
flow among objects or changes the system 
state. We assume here that the OMS is 
accessed by executing programs on behalf 
of a (human) user4 • 

An access mode, or simply a 111ode, 
is a name for a set of OMS operations. 

Access Right Determinations. Ac­
cess right determinations constitute the 

state of the object base with regard to ac­

cess control. This state is used to com­
pute whether an intended access is per­
mitted (we call this the evaluation of the 
state) and to explain the eff ect of opera­
tions which modify access rights. 

An access right determination 
(ARD for short) is a quadruple (S,G,M,V), 
S being a subject, G a granule, M a 
Mode, and V being a value which indicates 
whether S shall be allowed to access G us­
ing operations in M. An ARD corresponds 
to an entry in an access control list. 

4 More precisely, we assume that the OMS has 
an application programming interface and that 
OMS operations can only be invoked by an ap­
plication program (viz. a tool of a design envi­
ronment). When deciding whether an intended 
access is allowed the OMS needs to know on be­
half of which user(s) or subject(s) the access is to 
be performed. Thus, there must be a mechanism 
which conveys this information to the OMS. The 
details of such a mechanism are irrelevant for the 
concepts presented in this paper; they can vary 
considerably depending on the implementation of 
the OMS, the binding between an application and 
the OMS, and the process model of the underly­
ing operating system. Such a mechanism includes 
normally means for the identification and autho­
rization of human users. Examples of such mech­
anisms are processes in operating systems or ses­
sions in transaction processing systems. 
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2.2 Data Granules 

2.2.1 Structurally Object-Oriented 
Database Systems 

This subsection introduces structurally ob­
ject-oriented OMSs and complex objects in 
order to give some intuitive understanding 
of the data granules occurring in OMSs. 
We abstract from all details of concrete 
OMSs which are irrelevant for our DAC 
concept. Readers familiar with OMSs may 
skip this subsection. 

Basic Concepts. Structurally object­
oriented OMSs [Di86] have inherited con­
cepts from database systems and file sys­
tems. We assume that their data model 
is an extension of the entity-relationship­
model [Ch76]. Examples of such 
OMSs are Base/OPEN [BA89], CAIS-A 
[CAIS88], CWS/OMS [Ha&89], DAMO­
KLES [DAMO88]. GPI/OMS [GPI89, 
Pe89], PCTE+/OMS [PCTE+88], PVS 
[PVS87] and many others. 

An object base contains objects and 
relationships. A relationship connects 
objects which play a "role" in this relation­
ship. Objects and/or relationships have 
attributes. 5 

Complex Objects. A distinguishing 
feature of structurally object-oriented 
OMSs are complex objects. Complex 
objects allow to directly represent typi­
cal hierarchical structures, e.g. module 
graphs, documents, etc., as one complex 
object in the OMS. Figure 1 contains an 
example of a deeply nested complex ob­
ject which might represent the data of a 
complete development project. 

5 Objects, relationships and attributed are 
typed. Typing is not relevant for access controls 
for object instances, but, of course, for access con­
trols on the type level (see section 7.1). 

.s 

In general, a complex object consists of 
a set of attributes, a set of direct com­
ponents and a set of internal relation­
ships. We will refer to the set of attributes 
as "root node". Components are again 
( complex) objects. Interna! relationships 
of an object are relationships between this 
object and its direct and indirect compo­
nents or between components of this ob­
ject. 

An atomic object is just a special case 
of a complex object, namely one without 
components or internal relationships. We 
will therefore simply refer to "objects" in 
the following. 

Data Manipulation. We assume here 
that OMSs rely mainly on navigation for 
locating objects. Navigation in OMSs is 
similar to navigation in hierarchical file 
systems and completely different from nav­
igation in network databases6

. 

The OMS provides operations to copy, 
delete, versionize, lock, move, etc. arbi­
trary complex objects. Only the attributes 
of the object, viz. the root node, can be 
accessed directly; accessing attributes of 
a component object requires typically to 
navigate to this component object, e.g. via 

• pathnames of objects. 

Shared Objects. Two complex objects 
can share a component; such a component 
is called a shared object. vVe assume 
symmetrical sharing, that is none of the 
outer granules stands out from the others 7 • 

6For example, there is no concept of 
owner/member records [NDL87]. 

7 An example for symmetrical sharing in figure 
1 is the object moduleJ:iierarchy. The designers 
and developers can both write this object. 

Asymmetrical sharing means that the way in 
which a shared object can be accessed depends on 
the outer granule from which is it accessed. Typi­
cal examples for asymmetrical sharing are library 
elements, e.g. the object 'library Jnodule' in figure 
1. 
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library_ 
module 

6 

Figure 1: Nested complex objects (Ellipses represent objects, hold arrows "component-of" 
relationships. Attributes are not shown. Note that moduleJiierarchy is a shared object.) 

The overall component-of structure in an 

A write right on the complex object mod­
ule_hierarchy, which is granted to the designers of 
subsysteml, should not allow to write this library 
object, but only allow to write all non-library 
components of 'moduleJiierarchy'. This could be 
called a second class component-ofrelationship be-­
tween both objects. Second-dass components are 
not treated as part of the complex object in some 
operations. 

A write right on the complex object moduleJi­
brary, which is granted to the administrator of 
the library, must, of course, allow to write all li­
brary modules. This could be called a first class 
component-of relationship between both objects. 

First and second dass components of an ob­
ject should be treated differently in several oper­
ations on complex objects, e.g. copy, delete, ver­
sionize, archive, lock, move to another segment, 
etc. (They should therefore be distinguished by 
the data model.) 

In PVS [PVS87] for example, each object except 
the root object has exactly one first dass super­
object and arbitrarily many second dass superob­
jects. PRODAT [BaBK88] allows to distinguish 

OMS is acyclic, but not necessarily a tree. 

normal components, which are first dass, and li­
brary element components, which are second dass. 
PCTE and GPI/OMS [GPI89] provides only first 
dass component-of relationships. One could also 
define that a first dass component automatically 
becomes a second dass component as soon as it is 
shared (this seems to be proposed in [DiHP88]); 
this approach does, however, not adequately re­
flect the desired access rights in both above exam­
ples. 

With regard to access rights, second class com­
ponents of an object should not be regarded as com­
ponents at all, i.e. an access right on a complex 
object should not imply any access rights on a sec­
ond dass component. A required access right on a 
second dass component, which is almost always a 
read right, should be granted independently from 
rights on the superobject. Therefore, we will not 
discuss second dass components and asymmet­
rical sharing any further here. Note, however, 
that the ability to distinguish first and second 
dass components is a very useful feature of a data 
model. 
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In all, there is a hierarchy of nested, over­
lapping complex objects. 

2.2.2 General Definitions 

Objects are not the only granules in our 
DAC concept. Therefore, we introduce 
general definitions to express the nesting 
of granules. 

We call a granule G2 an inner gran­
ule (or component) of granule Gl if it 
is contained in granule Gl; conversely, Gl 
is called an outer granule of G2. The 
nesting structure of granules is, of course, 
acyclic8• Fora granule G, PARTS(G) de­
notes the set of all direct and indirect inner 
granules of G, including G itself. 

A granule is called shared if it is inner 
granule of two outer granules which are not 
inner/outer gr.anule of each other. 

2.2.3 Basic Features of Our DAC 
Concept 

The following are granules9 : 

• complex objects 

• root nodes of objects 

• relationships 

The set of attributes of a relationship 
needs not to be a granule because the ac­
cess modes for the "pure" relationship and 
the attributes of a relationship are disjoint 
(see section 6). 

Although it would be useful in some 
cases if single attributes were granules, too, 

8 In some OMSs, the whole object base is also 
a granule, in fact the "outermost" granule. 

9This set of granules refers to our assumptions 
about the data model (see section 2.2.1), which ab­
stracted from many details of concrete data mod­
els. A concrete data model may have additional 
features which lead to further granules. For exam­
ple, ifthe OMS supports versioning ofobjects then 
single versions and version sets should be granules. 
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this would introduce too much process­
ing and storage overhead10 . If different 
attributes shall have different ARDs then 
other data structures must be used: these 
attributes must, e.g., be allocated at suit­
ably placed component objects, which can 
have individual ARDs. 

The "inner granule" structure is as fol­
lows: an object contains its root node, its 
component objects and its inner relation­
ships. Root nodes and relationships do not 
have inner granules. 

2.2.4 Main Problems 

Nesting and Intersection of Objects. 
An access right for a complex object must 
be valid for all its components. For exam­
ple, a read right for a complex object must 
imply that the whole object, including all 
components, can actually be read. This 
means that an access right for a complex 
object implies implicit access rights for 
all components. 

An access right for a complex object 
should remain valid even if the set of com­
ponents of the complex object changes. 

The most important problem for access 
controls in OMSs is that complex objects 
can overlap. Note that a shared object is 
contained in two or more complex objects 
which are not component of each other. 
Thus, several implicit access rights, which 
might be contradicting, could apply for a 
shared object. 

Ownership. Complex objects cannot al­
ways have an owner: lt must be possi­
ble that components of a complex ob ject 
are exclusively owned by different subjects. 
Thus it must be possible that a complex 
object does not have an owner. However, 
one must be able to reach again a state in 

10Conceptually, it would be no problem to have 
single attributes as granules. 
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which one can modify access rights. 

Conversely, an owner of a complex ob­
ject very often wants to enforce to re­
main owner of the complete complex ob­
ject, even when other subjects are allowed 
to change the structure of the complex ob­
ject, e.g. to insert new components11 • This 
problem occurs also in UNIX-like directory 
structures: assume user A owns a directory 
and user B inserts a new file into this di­
rectory. Then user A is no longer owner of 
the directory and all its "components". 

2.3 Subjects 

vVe make certain assumptions about how 
projects which use an OMS based environ­
ment are organized into groups. These as­
sumptions and the resulting problems will 
now be explained. 

2.3.1 Nested Working Groups 

Working groups in a project are formed ac­
cording to a repeated division of the over­
all task of the project into smaller tasks. 
Work may be divided 

• quantitatively, e.g. a system is divided 
into subsystems which are developed 
independently, or 

• qualitatively, e.g. according to usual 
roles in a project ( analyst, de­
signer, programmer, manager, techni­
cal writer etc.). 

An example of a nested group structure 
is given in figure 2. This example has a 
tree structure. In general, there can be 
a partial order of groups. In our exam­
ple, the design/review groups and qual­
ity_assurance might have a common sub­
group, or the implementers of all subsys­
tems, etc. 

11 In fact, similar examples can be found for 
other access modes. 

8 

We assume that the subgroups of a 
group contribute to the overall task of this 
group. Note that groups are entities of 
their own right, they are not identified by 
their current set of members. 

2.3.2 General Definitions 

Users and groups are entities man­
aged by the OMS. They can be subjects 
in ARDs. The set of groups has an 
acyclic, transitive "subgroup-of" structure 

d " b f'" an users or programs are mem er-o 
groups. 

For a subject S, let MEMBERS(S) 
denote the set {S} if S is a user or program 
and the set of users or programs which are 
member of S or any of the transitive sub­
groups of S if S is a group. 

Note that there are now two interpreta­
tions of the term 'group': a "real world 
group" is a set of people, a "technical 
group in the OMS" is a technical feature of 
the access controls in the OMS. We assume 
that there are suitable means (identifica­
tion and authentication procedures) which 
enforce that a technical group in the OMS 
and a real world group correctly relate to 
each other. The "technical" definition ap­
plies in the context of all discussions about 
DAC within the OMS. 

The same remarks apply to the terms 
'subgroup' and 'user'. 

2.3.3 Basic Features of Our DAC 
Concept 

Any group-oriented DAC must offer the 
following general basic features ( which will 
be assumed in the rest of this paper): 

• Groups can be directly represented in 
the OMS, that is groups are a techni­
cal feature of the DAC of the OMS. 

• Groups can be the subject of access 
right determinations. 
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management quality_ 

Figure 2: A group structure 

• The structure of subgroups is explic­
itly represented in the OMS and ex­
ploited in the evaluation of access 
right determinations. 

• Arbitrarily many access right deter­
minations (with different subjects) for 
one object are possible. 

• A user can be a member of arbitrarily 
many groups. 

In addition to the above general basic 
features, our DAC concept has the follow­
ing additional features: 

There is an additional type of subjects: 
programs. A program is an object with 
an attribute of type string or long field 
which is executable. 

There is one predefined group WORLD. 
The "subgroup of" structure between 
groups is acyclic and has one root, the 
group WORLD. 

A user or program can be a member of 
several groups12 • Each user is member in 

12 All subjects, "subgroup of'' relationships, and 
"member of" relationships are represented in the 
OMS as objects or relationships of certain prede­
fined type. 

at least one group13 . One can enforce pure 
"user groups", i.e. groups which can have 
only users as member and only user groups 
as subgroups. The same holds for pure 
"program groups" 14 . 

2.3.4 Main Problems 

Activation of Groups. A very impor­
tant question is whether a user should be 
able to activate15 several groups (in which 
she/he is a member) at the same time and 
to exploit their rights: 

• lf this is possible then several prob­
lems arise; the most important one 
is: Different groups can correspond to 
different roles which may be mutually 
exclusive, for example the producers 
and reviewers of a document. Gener­
ally, activating more than one group 
contradicts directly the least privilege 

13 As a consequence, each user is direct or indi­
rect member of the group WORLD. 

14These restrictions on membership do, how­
ever, not affect our concepts and are therefore not 
discussed any further. 

15We assume that the rights of a group can only 
be exploited if this group has been "activated", 
e.g. through an explicit command of a user. 
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principle, and is therefore unaccept­
able in security-critical environments. 
As a consequence of these problems, 
it is often argued that the activation 
of more than one group should not be 
possible at all. 

• If only .one group can be activated at 
a time then a technical group must be 
( explicitly) given all rights required by 
this group and it is not possible to fac­
tor out rights which are common to 
several groups. This causes an unac­
ceptable overhead in terms of mainte­
nance effort and storage overhead. 

We conclude that it must not be al­
lowed to activate arbitrary groups at the 
same time, but that means are required 
which allow a controlled activation of sev­
eral groups. 

Combination of ARD Values. Acti­
vated groups can have different values in 
their ARDs for the same object and mode. 
Thus, a rule must be developed about how 
to combine these values. 

2.4 Access Modes 

There are only minor problems for DAC 
in OMSs due to access modes: due to the 
complexity of the data model, the num­
ber of access modes must be higher than 
in other systems. The full list of modes 
in our DAC concept will be presented in 
section 6. 

2.4.1 General Definitions 

Each granule G is assumed to have one par­
ticular type TYPE(G). The set of generic 
OMS operations applicable to a granule 
depends on its type16. For example, there 

16If an OMS operation involves several granules 
which are not inner/outer granule of each other 
then we regard each granule to be accessed sep-
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are different operations for objects and re­
lationships. Let OPS(T) denote the set of 
operations applicable to granules of type 
T. 

An access mode, or simply a 1node, 
is a name for a set of OMS operations. 
More precisely, an access mode M asso­
ciates with each type T a set of operations 
M(T), which is a subset of OPS(T). For 
example, mode 'read' associates different 
operations with complex objects and with 
root nodes (see section 6). 

2.5 Distribution 

Design environments are typically basecl 
on workstations and servers which are con­
nected by a local area network. We as­
sume that the object base is distributed 
over the network. This requires that the 
object base is partitioned into several seg­
ments which can be independently stored, 
e.g. in a file or a "raw volume". Moreover 
we assume that certain types of volumes, 
e.g. tapes, floppy discs or even local harcl 
discs, can be temporarily dismounted. 

Finally, we assume that a complex ob­
ject can be distributed over several sites, 
that is the root node and components can 
reside on different sites. 

2.5.1 Main Problems 

lt can happen in distributed systems 
that single sites are non-operational ( e.g. 
switched off) or unreachable ( e.g. due to 
a network failure) or that a volume which 
contains a segment is dismounted. A very 
important design goal is therefore to re­
main resilient against the unavailability of 
segments. lt should be possible to per-

arately. For example, the creation of a relation­
ship between objects A and B implies an access 
to both A and B. In such cases, suitable access 
rights must be available on all involved granules 
to perform this operation. 



p894b10 

form sensible work on a site with the seg­
ments reachable at this site17. Dependen­
cies on data stored in other segments must 
be strictly avoided. (Communication de­
lays are another reason for this design pol­
icy.) As a consequence, objects and their 
ARDs must be stored in the same segment. 

The above remarks and our assumption 
that a complex object can have compo­
nents on different sites imply that the ac­
cess controls must be designed in such a 
way that it is possible to decide whether an 
intended access to an object is allowed by 
using only ARDs of this object, and with­
out using ARDs of superobjects or subob­
jects (which might be stored in a different 
segment). 

3 Access Right Deter­
minations 

ARDs, which have already been intro­
duced in section 2.1, are a central notion 
of our DAC concept. This section presents 
a refined definition and related design de­
c1s10ns. 

Access Units. With the above defini­
tions of granules, subjects and modes, we 
are now able to formally specify the no­
tion "access" and, more importantly, sets 
of accesses. 

Let s be a user ~r program, let g be a 
granule, and let o be an OMS operation in 

17This requirement is the main reason why a dis­
tributed OMS which allows to freely move objects 
between segments ( e.g. PCTE) does not have re­
lational query facilities which would allow to treat 
all instances of an object type as a base relation: 
Instances of the object type can normally be cre­
ated on, or moved to, any workstation. Conse­
quently, a query must be executed on all (!) work­
stations and cannot terminate if only one worksta­
tion or volume is unavailable. In medium to large 
en vironments with 10 - 100 or even more sites with 
local disc, this is untolerable. 
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OPS(TYPE(g)). Then (s,g,o) denotes an 
elementary access, i.e. granule g is ac­
cessed through operation o by, or on behalf 
of, subject s. 

Let S be an arbitrary subject, G be an 
arbitrary granule stored in the OMS and M 
be an access mode as defined by the DA C 
mechanism of the O MS ( the set of access 
modes is normally static, but the follow­
ing does not depend on this assumption). 
Then the access unit (S,G,M) denotes 
the following set of elementary accesses: 

{ (s,g,o) 1 s E MEMBERS(S), 
g E PARTS(G), 
o E M(TYPE(g))} 

Access Right Determinations. Ac­
cess right determinations constitute the 
state of the object base with regard to access 
control. The state is defined to be a func­
tion access which maps the set of current 
access units onto a set of access values. In 
other words, for each triple (S,G,M), ex­

actly one ARD (S,G,M,V) is valid in the 
OMS. 

Two possible values and their meanings 
are: 

access(S,G,M) = '+': the accesses of 
this unit are allowed. 

access(S,G,M) = '-': the accesses of 
this unit are not allowed. 

Further values will be defined below. 

We use the notation access(S,G,M) 
:= V to express that the state is changed 
such that access(S,G,M) = V holds after 
the change. 

Ownership. Modification of ARDs for a 
granule G (i.e. access(S,G,M) := V) is also 
considered to be an operation on G; i t is 
covered by one specific access mode called 
'control'. Subjects which have permission 
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to modify ARDs for a granule G are also 
called owners of G. 

We assume (like PCTE) the "laissez­
faire" approach to access permissions ( see 
[Do&85]), i.e. we allow several equal own­
ers of a granule. 18 

4 Subjects and the Ac­
tivation of Groups 

This section gives only a short description 
of the features of our concept which are 
related to subjects. A more detailed de­
scription can be found in [Ke90]. 

Group Paradigms. A distinguishing 
feature of group-oriented DAC is that the 
subgroup structure is explicitly maintained 
and exploited. This, however, leads to the 
question: what is the semantics of the sub­
group structure '? A group paradigm is 
a set of assumptions and rules about why 
and how, given a real world group struc­
ture, technical groups and subgroups in the 
OMS are formed, which rights are given to 
them, and how these rights are combined 
(s. [Do&85]). Our concept supports two 
paradigms: 

Under the rights package paradigm, 
a group corresponds to a set ( a "pack­
age") of rights which shall be given to sev­
eral users. The main reason for support­
ing the rights package paradigm is that it 
allows to efficiently manage access rights. 

A subgroup of a group G has less mem­
bers, which have potentially more common 
rights than the whole group. Thus, sub­
groups have more rights than supergroups. 
This is to be achieved by letting the sub-

18In our concept, one can impose a total or­
der on the owners of a granule through ownership 
of outer granules. This may require to introduce 
dummy outer granules. Details will be explained 
in section 5. 
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groups automatically and implicitly inherit 
the rights of their supergroups. 

In order to exploit the inheritance of 
rights of supergroups ( and in view of the 
goal to efficiently manage access rights) 
rights should be granted according to the 
delta rule: a group is given the rights 
needed by its members except those rights 
already granted to one of its supergroups. 

Under the task paradigm, a group 
corresponds to a task which it shall solve. 
The group is given the rights required to 
solve this task. Only users which can act 
in the name of the group, and which we 
call administrators, are members of the 
group under the task paradigm. A sub­
group has less rights than its supergroups 
since it deals only with a subtask. 

Realization of the Rights Package 
Paradigm. Accesses to the object base 
are _performed by executed programs, i.e. 
processes19 . The following subjects are 
active for a process: 

• the user on behalf of whom the pro­
cess runs; 

• one explicitly activated group in which 
this user is a member, and all di­
rect and indirect supergroups of this 
group; 

• all groups in which the executed pro­
gram is member, and all direct and 
indirect supergroups of these groups. 

Informally, the rights of all active 
groups are "added". In the simplest case, 
the process can perform an access if at 
least one subject is allowed to do this. A 
precise definition how the rights of the ac­
tive groups are combined is given below. 

19Processes are not necessarily understood as 
operating system processes here (see also footnote 
4). 
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Realization of the Task Paradigm. 
There are several ways to realize the task 
paradigm. Due to space considerations, we 
will present only one of them ( a second one 
can be found in [Ke90]): 

• to each group G, a subset A(G) of 
administrators of G is associated. 
This set of users is not a technical 
group of its own right. Adminis­
trators, being members of G, inherit 
rights from the supergroups of G. 

• In addition, administrators "inherit 
upwards" from all subgroups of G 
(but not from the users which are 
members of the subgroups). In other 
words, whenever a subgroup S of G 
is subject of an access rights determi­
nation then members of A(G) can ex­
ploit this right. 

This solution does not cause much over­
head: There are straightforward ways to 
represent the subset A( G). The "upwards 
inheritance" can be implemented as fol­
lows: if a member of A(G) explicitly ac­
tivates group G then all subgroups of G 
are activated implicitly. ARDs of several 
active subjects are combined in the same 
way as specified above, with the following 
exception: ARDs for subgroups of G with 
value - are not considered. 

A New ARD Value. The rights pack­
age paradigm leads to situations in which 
several groups are active. This causes a 
problem if there are only two ARD values. 
Assume the following situation: 

• group S1 has a certain right, that is 
access(S1,G,M) = '+' for some gran­
ule G and mode M; 

• S2 is a subgroup of Sl. 

According to the delta rule, S2 should 
not have this right again, that is 
access(S2,G,M) = '+' should not hold. 
However, access(S2,G,M) = '-' would have 
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to interpreted in the sense that S2 must not 
be able to perform operations of M on G; 
this is quite contrary to what was intended 
in this situation. 

A solution to this problem would be an 
ARD with a value which neither allows 
nor denies the accesses of an access unit 
((S2,G,M) in our example). We call such 
an ARD value undefined (? for short). 

lt will later turn out that one undefined 
value is not sufficient ( due to the nesting 
of granules). We will defer this discussion 
and assume for the rest of this section that 
granules do not overlap. 

Evaluation of ARDs. We are now able 
to specify how the ARDs of several sub­
jects are combined. A process is allowed 
to perform operation o on a granule G iff 

• there is a mode M such that o E M 
and such that there is an active sub­
ject S such that access(S,G,M) = '+', 
and 

• there is no mode M such that o E M 
and such that there is an active sub­
ject S such that access(S,G,M) = '-'. 

In other words, ARDs of active subjects 
are combined according to the logic shown 
in table 1. 

+ ? -

+ + + -
? + ? -

Table 1: Combination of ARD values 

lt is not necessary to consider ARDs for 
outer granules of G due to reasons which 
will become clear in section 5, 

5 Granules 

This section explains important aspects of 
our concept which are related ta granules. 
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The main problems addressed are the over­
lapping of complex objects and the effi.cient 
implementation of the evaluation of ARDs. 

5.1 ARDs for Nested Gran­
ules 

Derived vs. Dominating ARDs. 
There are two basic design choices concern­
ing the nature of ARDs of complex gran­
ules: 

The ARDs are derived from the ARDs 
of the components of this granule. When­
ever an ARD of a component is changed 
the ARD of the whole granule can change 
as a side-effect. The obvious problem is 
that such side-effects may be unwanted. A 
typical example is the ownership problem 
mentioned in -section 2.2.4. With derived 
ARDs, it is impossible to enforce consis­
tent access rights for all components of a 
granule. 

ARDs of a granule dominate (i.e. take 
precedence over) ARDs of components. 

We adopt this approach because it re­
moves the problems mentioned above. 

Additional ARD Values. We come 
back to the problem that several groups 
might be activated at the same time and 
that they might have different ADR values 
for the same object and mode. 

Assume that groups S1 and S2 are ac­
tive for a process and that 

access(S1,G,M) = '+', and 
access(S2,G,M) = '?'. 

We have to define the result of the combi­
nation of the values + and ? . 

Assume further that G is a complex ob­
ject. Now we have to distinguish two cases: 

• if there is no inner granule G 1 of G 
such that access(S2,Gl,M) = '-' then 
the process is allowed to execute op-
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erations in M on G, that is the com­
bination of the values + and ? is +. 

• Otherwise, the process is not allowed 
to execute operations in M on G, that 
is the result of the combination is - . 

We conclude that, in case of complex 
granules, the ARD value ? does not contain 
enough information to compute its combi­
nation with +. As a result, it would be nec­
essary to scan all inner granules of G for a 
relevant denied ARD. This is unacceptable 
because of the overhead, distribution and 
other reasons (see section 2.5.1). 

This problem leads us to introduce two 
new ARD values instead of ? , namely 

?+ ( or "positive undefined") and 

?- (or "negative undefined"). 

Both indicate that no statement is made 
whether accesses of a whole access unit 
(S,G,M) shall be allowed or denied. The 
meaning of both values differs as follows: 

?+ indicates that there is no inner granule 
Gl of G such that access(S,Gl,M) = 
'-' or '?-'. 

?- does not impose any such restriction, 
that is there can be zero, one or 
more inner granules Gl of G such that 
access(S,Gl,M) = '-' or '?-'20

. 

The value ?- is only meaningful for 
granules which can have inner granules, 
that is only for objects. The value ?- is 
therefore only applicable to ARDs concern­
ing objects. 

The evaluation rule remains the same as 
specifi.ed above with the addition that the 
value ?+ is treated like? and that the value 
?- is treated like -. The combination logic 
of all four values is shown in table 2. 

20 Both values allow a situation in which there is 
no inner granule with denied ARD. The difference 
between both values is that ?- allows to insert an 
inner granule with denied ARD, whereas ?+ does 
not allow to do this. Note that ?+ and ?- are in 
some sense similar to intention locks [Ko83]. 
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+ ?+ ?- -

+ + + 
?+ + ?+ 
?- -

Table 2: Combination of 4 ARD values 

5.2 Consistency Rule for In-
ner Granules 

A new problem caused by dominating 
ARDs is that, given a shared granule G, 
it may have two outer granules which are 
not inner/ outer granule of each other and 
which have with contradicting ARDs. This 
situation is semantically inconsistent and 
must be avoided. Therefore, we introduce 
the following consistency rule: 

ff G2 is an inner granule of Gi then 
- access(S1 Gl,M) = '+' implies 

access(S,G2,M) = '+', 
- access(S,Gl,M) = '?+' implies 

access(S, G2,M) = '+' or '?+\ 

- access(S,GJ,M) = '-' implies 
access(S,G2,M) = '-' 

There is no such rule for the value ?-. 

Any attempt to set ARDs such that 
the consistency rule would be broken is re­
j ected. 

The consistency rule offers several very 
important advantages, both with regard 
to the clarity and implementability of our 
concept: 

Conceptual Aspects. The consistency 
rule prevents complicated situations which 
are difficult to interpret and to understand 
by users and which are likely to lead to er­
roneous results when users change ARDs. 

In fact, if there are any implicit ARDs 
for a granule then their value is the same 
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like the value of the explicit ARD 21 . Con­
sequently, implicit ARDs need not be con­
sidered at all in the evaluation of ARDs! 

Without the consistency rule, the no­
tion of an implicit ARD must be part of the 
concept22 and there needs to be a compli­
cated definition how ARDs are evaluated. 

Implementation Aspects. We assume 
that all ARDs for an object are stored in 
an access control list23 (ACL) for this 
object. The important point is that the set 
of all ARDs of an object can be retrieved 
and changed very efficiently. 24 

We assume (like PCTE) that the root 
node of a complex object and a component 
object can reside on different sites ( or vol­
umes ). Because of the reasons mentioned 
in section 2.5.1, it must be possible to eval­
uate the ARDs of an object O without ac­
cessing the ACL of an outer or inner gran­
ule ~f O which resides on another segment. 

This problem gives another strong mo­
tivation for the consistency rule for inner 
granules: without this rule, implicit ARDs 
would be relevant in the ARD evaluation. 
The ACL of all outer granules whose root 
node is stored on another volume woulcl 
have tobe available; thus they would have 
to be copied into the segment in which 0 
is stored, at least in the case of all gran­
ules which have direct outer granules on a 
different segment (note that this may even 
apply for relationshi ps). This would leacl 

21 Note: an ARD with value ?+ or ?- for a com­
plex object does not imply any implicit granted or 
denied ARDs for the inner granules. 

22 Note that we have introduced this notion only 
for a discussion of general problems and design al­
ternatives. 

23 An ACL is often understood as an ordered set 
of ARDs; in our model, it is an unordered set. 

24It is not strictly necessary to store an object 
and its ACL on the same disc page. However, in a 
distributed OMS (or an OMS with removable vol­
umes) both must reside on the same site (or the 
same volume); see section 2.5.1. . ..-:::\··1·v·~ 

/ ' ' 'f');'\~ / .~,,, .. .;; ~'1-01~~ 
f . ._, ~:;., 
'.·' ~?:!. 
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to a substantial storage and maintenance 
overhead. 

If a complete complex object is stored 
within one volume - which is the nor­
mal case - then one can save substantial 
amounts of storage space: ARDs for the 
complex object need not to be repeated in 
the ACL of the components. The price for 
this is that the evaluation of the ARDs of 
a component object requires to scan the 
ACLs of the outer granules. Moreover, 
changes of ARDs become more difficult to 
implement. 

However, access rights differ typically 
only on the level of rather large objects, 
e.g. whole document versions, in typi­
cal tools within a software development 
environment. Objects below this level 
do typically not have additional ARDs; 
in other words, no ARDs at all need to 
be stored for the Zarge number of small 
objects. The boundary between large­
grain and small-grain objects can be deter­
mined statically within a schema ( e.g. by 
adopting the two-tier database approach 
of ECLIPSE [CaA87]). Ideally, however, 
the OMS should dynamically optimize the 
space/time trade-off in the management of 
ACLs. 

Finally, it is very important that the 
evaluation of ARDs is fast, in particular 
for complex objects. This gives another 
motivation for the consistency rule for in­
ner granules: without this rule, it would be 
necessary to scan all inner granules when 
determining whether an intended access is 
allowed. 

5.3 Operations 

Basically, there is an Operation SetARD to 
set an ARD and another operation GetACL 

to query all ARDs of an object. 
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Propagation. A consequence of the 
consistency rule is that two kinds of prop­
agation in SetARD become necessary: 

• If access(S,G,M) is set to + or - then 
this change must must be propagatecl 
to all inner granules. More precisely, 
if access(S,G,M) := V, V E { +,-}, 
then access(S,G',M) := V for all G' 
E PARTS(G). 

This rule applies also for the va.lue 
?+ with the exception that ?+ is not 
propagated to an inner gra.nule G' if 
access(S,G',M) = '+' 

• If access(S,G,M) is set to ?- then this 
change must must be propagated to 
all outer granules. 

If access(S,G,M) is set to ?+ then 
this change must must be propagated 
to all outer granules except those 
where access(S,G,M) = '?-'. 

The above propagation rules apply con­
ceptually. An implementation of the con­
cept should actually be optimized along 
the lines indicated in the previous sec­
tion. The resulting performance reduction 
can in any case be tolerated because ARD 
modifications are much less frequent tha.n 
evaluations and are not time-critical. 

Propagation into inner granules means 
that the old value of access(S,G' ,M) is re­
placed by the new one. The consistency 
rule for inner granules applies here: the 
operation fails if the rule would be broken. 
An example of such a situation is: 

• G' is a component of both G and Gl 
(i.e. G' is a shared object), 

• access(S,Gl,M) = '-' a.nd, thus, 
access(S,G',M) = '-', and 

• assume the operation access(S,G,M) 
:= '+' shall be executed. 

This operation fails because the result 
would break the consistency rule. 
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Propagation to outer granules could oc­
cur as an inadvertent side-effect. There­
fore, SetARD must have a parameter which 
specifies whether propagation shall occur 
or not. If propagation shall not occur, 
the operation fails if propagation would be 
necessary. 

If access(S,G,M) is set to ?- or ?+ and 
if G has inner granules then the ARDs of 
inner granules remain unchanged. If prop­
agation to inner granules is desired then 
this can be specified by another parameter 
of SetARD. 

Changes of the Component Struc­
ture. There are operations which make 
a granule G' a component of another gran­
ule G. G' can be "freshly created", for ex­
ample a new c?mponent or a new internal 
relationship of a complex object is created; 
in this case we assume G' to have an ini­
tial set of ARDs determined by the creat­
ing process. G' can also exist already, e.g. 
an existing object is made a component of 
another object, in particular in order to 
share a component between two complex 
objects. 

One effect of these operations is that all 
ARDs of G with value +, ?+ or - are propa­
gated into G', in the same way as explained 
above. 

The right to add or remove components 
of an object is controlled by an own ac­
cess mode which is different from the mode 
which controls writing of the attributes 
(see next section). The operation which 
makes an object O a component of another 
object requires to be owner of 0. 

6 Access Modes 

This section gives a summary of the as­
pects of our concept which are related to 
access modes. 
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There are 9 access modes. Table :3 
shows for each access mode and each gran­
ule type whether the resulting set of oper­
ations is empty (by -) or non-empty (by a 
number). A short description of each op­
eration set is given below. 

access complex root relation-
mode object node ship 
read 1 2 2 
write - 3 3 
delete 4 - 5 

append - 6 6 
execute - 7 7 
navigate - - 8 

mod_comp - 9 -
mod..rel - 10 -

control 11 12 12 

Table 3: Operation sets for access modes 
and granule types 

1: copy the object 

2: read the values of the attributes 

3: modify the values of the attributes 

4: delete the object 

5: delete the relationship 

6: append to the values of the at­
tributes ( applies only to long fields 
and strings) 

7: execute the values of the attributes (ap­
plies only to long fields and strings) 

8: navigate along the relationship 

9: insert or delete direct components of 
the object 

10: append a relationship to the object 

11: change ARDs for this granule, make 
the object a component of another ob­
ject 

12: change ARDs for this granule 

Note that an ARD for an object can im­
ply ARDs for its inner granules which may 
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have a different type. For example, the ap­
pend right on an object implies that there 
is also an append right on the root node 
which enables to append to all attributes 
of this object which have the type long field 
or string. 

There are no inclusions of access modes. 
For example, the set of operations asso­
ciated with 'write' right does not include 
the set of operations associated with 'read'. 
Inclusions lead to considerable complexity 
and additional special concepts. If desired 
they should be maintained by a tool which 
is used to modify ACLs. 

7 Discussion 

7 .1 Extensions 

There is an important extension of our ap­
proach which has not been presented here 
due to space considerations: There are also 
access controls on the type level, in addi­
tion to the controls on the instance level. 
For example, it is possible to grant only 
the group 'managers' the right to read and 
write objects of type 'managementJeport'. 
In general, subjects can be allowed or de­
nied to access user-defined types of ob­
jects, attributes or relationships. This con­
cept mainly serves as a "filtering mecha­
nism" which allows to filter out parts of 
a complex object which belong to a spe­
cific role. Type level access controls al­
low to realize important access control fea­
tures known from conventional database 
systems, viz. account level privileges and 
restrictions of the visibility and accessibil­
ity of fields or relations in the same way 
like external schemata. Types have own­
ers like ordinary objects, only owners can 
grant or revoke type rights. Finally, inher­
itance hierarchies of object types are sup­
ported. 
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7.2 Other Approaches 

Although the importance of object- and 
group-oriented access controls in OMSs 
has been emphasized at many occasions, 
there are actually only very few attempts 
to develop concepts to solve the relatecl 
problems. 

Some proposals cannot sensibly be com­
pared with our proposal because they re­
fer to a substantially different data moclel 
(even though it is also called "object­
oriented"). For example, some object­
oriented DBS are extensions of conven­
tional relational DBSs and have kept an 
SQL-like query language and data-depen­
dent views as main DAC mechanism. 

[FeGS89] for example presents a DAC 
concept for such "relational" OMSs. lt 
mainly addresses type-level access controls 
and does not deal with hierarchical com­
plex objects, sharing, or distribution. 

In the following, we will only discuss 
DAC concepts which are compatible with 
our assumptions about the data model of 
the OMS. 

[CAIS88] and [PCTE+88] present ac­
cess control mechanisms which support 
nested groups, but they do not support 
nested complex objects and the task para­
digm. 

[KiBG89] presents a mechanism which 
supports complex objects as granules, but 
without a consistency rule as presented 
here. As a consequence, a highly compli­
cated scheme for implicit ARDs on compo­
nent objects needs tobe introduced. Nest­
ing of groups is not supported. lt would be 
very difficult to do this without a consis­
tency rule for inner granules. By he same 
reasons, it would be difficult to extend this 
approach on distributed OMSs. 

An object management system with 
advanced access control features is PVS 
[PVS87]. The main difference between our 
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concepts and PVS is that PVS is based 
on asymmetric sharing (see footnote 7), 
1.e. each shared object has one "main" 
superobject. Symmetrical sharing, which 
we have chosen, offers advantages over 
asymmetric sharing in many applications. 
Asymmetrie sharing simplifies many prob­
lems; e.g. it allows to use simple rules for 
combining "implicit" ARDs of a shared ob­
ject. Consequently, PVS does not have a 
consistency rule for ARDs of inner gran­
ules. Moreover, PVS has only two ARD 
values, which correspond to + and ?+. 

A completely different approach to 
group-oriented access controls in an OMS 
is taken in DAMOKLES [DAMO88]. 
DAMOKLES separates the complete data­
base into segments called 'database'. Each 
'database' is owned by one user or user 
group. User groups have a hierarchical 
(i.e. partially ordered) structure. A user or 
group can arbitrarily access its own 'data­
bases' and under certain restrictions the 
'databases' of super- and subgroups. In 
other words, all objects within one 'data­
base' have the same ARDs. This allows to 
simplify access controls considerably. If an 
object shall be accessed by several groups 
then it may become necessary to copy the 
object into several 'databases'; this is the 
most important disadvantage of this ap­
proach. Copies can be produced using the 
commands copy or check-out. The copies 
can be changed independently (with some 
exceptions for check-out copies); thus it is 
not always possible to simulate an object 
with n ARDs by copies of this object in n 
different 'databases'. 

Relation to Group Transactions. 
The problem of supporting nested working 
groups which use a design environment has 
also been addressed by another concept, 
namely design and group transactions ( e.g. 
in [BaKK85, Kl&85]). One of the features 
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of such transactions is that they realize 
nested private databases for nested work­
ing groups. Objects are exchanged be­
tween these databases via check-out ancl 
check-in operations. The privacy aspect of 
group transactions can easily, and shoulcl, 
be implemented with group-oriented DAC 
[Ke89]. Moreover, if an OMS provicles 
DAC then group transactions are only 
practicable if the DAC supports the task 
paradigm, because check-out and check­
in usually include copying or versioning of 
complex objects. 
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