
deposit_hagen
Publikationsserver der
Universitätsbibliothek

Mathematik
und
Informatik

Informatik-Berichte
93 – 05/1990

Udo Kelter

Group-Oriented Discretionary Access Controls
for Distributed Structurally Object-Oriented
Database Systems

Group-Oriented Discretionary Access Controls
for Distributed Structurally Object-Oriented

Database Systems

Udo Kelter
FernUniversität Hagen, Praktische Informatik V

Postfach 940, D-5800 Hagen, Germany

April 1990

Contents

1 Introduction 2

2 Problem Analysis and Basic
Definitions 4

2.1 Basic Notions of DAC 4
2.2 Data Granules 5

2.2.1 Structurally Object­
Oriented Database
Systems 5

2.2.2 General Definitions 7
2.2.3 Basic Features of

Our DAC Concept 7
2.2.4 Main Problems . . . 7

2.3 Subjects 8
2.3.1 Nested Working Groups 8
2.3.2 General Definitions . 8
2.3.3 Basic Features of

Our DAC Concept 8
2.3.4 Main Problems . . 9

2.4 Access Modes 10
2.4.1 General Definitions 10

2.5 Distribution 10
2.5.1 Main Problems . . 10

3 Access Right Determinations 11

4 Subjects and the Activation of

1

Groups 12

5 Granules 13
5.1 ARDs for Nested Granules 14
5.2 Consistency Rule for Inner

Granules .. 15
5.3 Operations . 16

6 Access Modes 17

7 Discussion 18
7.1 Extensions . 18
7.2 Other Approaches . 18

References 19

Abstract

Structurally object-oriented database sys­
tems [Di86] are a new dass of dedicated
data storage systems which are intended
to be a basis of CAD, CASE, and other
design environments which shall support
large development teams.

This paper presents a concept for dis­
cretionary access controls for structurally
object-oriented database systems. lt ad­
dresses two particular problems:

A distinguishing feature of the data

p894bl0

model of structurally object-oriented data­
base systems are complex objects. Com­
plex objects are nested and can overlap,
i.e. they can share campanents. Arbitrary
complex objects should be units af access
control. Shared companents cause partic­
ular prablems because the abjects in which
they are contained might have cantradict­
ing access rights. This problem is solved
by introducing certain constraints an the
way in which access rights can be granted
or denied.

A second major problem results from
the arganizatian af development projects
which use design environments: typically,
this is a hierarchy of nested groups. Our
concept is group-ariented in the sense
that it supports such subgroup hierarchies.
Two different interpretations af a subgroup
structure, termed graup paradigms, are
supported. Under one paradigm, a group
is used ta give several users the same
rights, whereas under the other paradigm
a group has the set of rights which corre­
sponds to the task af the group.

Twa final noteworthy features af aur
concept are that it employs a 4-valued logic
which supports explicit denials of access
and that it makes provisian for distribu­
tion of the database.

Keywords: discretionary access con­
trols, object-oriented databases, distribut­
ed databases, complex objects, shared
objects, hierarchical groups, group para­
digms, denial of access

2

1 Introduction

Design environments for CAD, CASE or
similar applicatian domains impose new
requirements an their underlying data
management system. Canventional data­
base systems or fi.le systems do not fulfill
these requirements. This has led ta the de­
velopment of a new dass af data manage­
ment systems termed abject-oriented or
nan-standard database management sys­
tems.

This paper deals with discretianary ac­
cess cantrols for one particular type of such
database systems, termed structurally
object-oriented [Di86]. More specifi­
cally, we will mainly refer to systems which
have been designed to be a basis of soft­
ware development environments. We will
use the term object management sys­
tem (OMS) to refer to such database
management systems and the term object
bas·e to refer to the database managed by
the OMS. The main features of such OMSs
will be presented in section 2.2.1.

We understand that an environment
and its OMS shall support large devel­
apment projects, which are organized in
many working groups and roles. In such

· environments (as opposed to single-user
enviranments), access controls are indis­
pensable. OMSs will not be accepted by
industry unless they provide access con­
trols which are as powerful as those known
from canventional database systems or for­
merly used project libraries.

This paper deals only with discre­
tionary access controls (DAC), not
with mandatory access controls. DAC are
means ta restrict access ta data granules
an the basis of the identity of subjects
and/ar graups to which the subjects be­
lang. The controls are discretionary in
the sense that certain subjects ("owners")
of an data granule can determine whether

p894b10

and how other subjects can access this
data granule.

DAC concepts for conventional data­
base management or file systems, e.g. con­
ventional access control lists or views, are
not adequate for OMSs because they do
not meet the novel conditions for, and re­
quirements on, access controls in OMSs1 :

• There is a hierarchy of nested, over­
lapping complex objects. A complex
object, e.g. a document, a parse tree,
a module hierarchy, or parts thereof,
is the typical unit of access in soft­
ware development environments, ra­
ther then a set of atomic objects which
is specified by a query. Therefore,
each complex object must be a gran­
ule of access control.

Most OMSs are, in fact, oriented
towards navigational access and do
not have a powerful descriptive query
language which could be a basis
for defining nested data-dependent
views2 • The concepts presented
here are specifically designed for such
OMSs.

• Designenvironments are mostly based
on workstations (with or without local
disc) and servers which are connected
by a local area network. Distribution
of data in such architectures must be
supported.

• The user groups are hierarchically or­
ganized. Such hierarchies must be
supported; we call such access controls
group-oriented. Users and user
groups cooperate, rather than com­
pete, in such environments. There­
fore, access controls must support
cooperative working. Nonetheless,

1See also [EURAC89, DiHP88, GPI89a, GrS87,
Ke88, Ke89, Pe89].

2One main reason for this situation stems from
the particular circumstances of distribution. See
also sections 2.2.1 and 2.5.1.

3

groups can be in conflict in the sense
that they correspond to different roles
which must not be executed at the
same time by one user.

The resulting requirements on access
controls are discussed in more detail in sec­
tion 2. In all, access controls for OMSs
present a new challenge and require new
approaches.

This paper presents a concept for ac­
cess controls in OMSs which meets the re­
quirements mentioned above. This con­
cept has been developed for one particular
OMS, namely PCTE3 [PCTE87, PCTE88,
PCTE+88]. PCTE is specifically designed
to be a basis for software development
environments and differs from other such
OMSs in several aspects: it has external
schemata, its programrning interface is up­
wards cornpatible with the UNIX file sys­
tern and it is transparently distributed.

However, we present our concepts on a
level which abstracts from most details of
the data model of PCTE (or other OMSs)
because they are not very relevant here and
because our concepts are actually applica­
ble to a wide range of structurally object­
oriented OMSs for CASE and other appli­
cation domains. Of course, detailed fea­
tures of other OMS data models may ne­
cessitate certain adaptations.

Access control concepts often address
data integrity, too. Structurally object­
oriented OMSs differ considerably in their
data model inherent integrity constraints
and their features for specifying integrity
constraints. The concept presented here
does not address data integrity, but can
be extended in this direction for certain
classes of OMSs.

The rest of this paper is organized as
follows:

3PCTE is the acronym of "A Basis for a
Portable Common Tool Environment"

p894b10

Section 2 introduces for several problem
areas background information, definitions,
basic features of our concept, and a sum­
mary of the main problems of this area.

Section 3 introduces a central notion of
our concept, access right determinations.

Section 4 discusses how the group struc­
ture is to interpreted. lt is shown that
two different interpretations, termed group
paradigms, must be supported.

Section 5 discusses the particular prob­
lems due to complex objects and sharing
of components. The proposed solution is
based on a consistency constraint for rights
on nested data granules.

Section 6 presents the list of access
modes.

Section 7 compares our approach with
other proposals and surveys an extension,
namely type level access controls.

2 Problem Analysis and
Basic Definitions

This section discusses several problem ar­
eas which are particularly relevant for
DAC in OMSs. For each area, we will
(1) describe relevant aspects of the "real
world situation" in OMSs or software de­
velopment environments, (2) define related
terminology, (3) introduce basic features
of our DAC concept, and (4) summarize
the most important problems. These steps
are not strictly sequential, because prob­
lern analysis and design are - as usual -
interleaved.

We start with defining several general
notions of DAC (adapted from (DOD83,
Hs87, ITS89]).

2.1 Basic Notions of DAC

A (data) granule is a passive entity which
contains or receives information. Access
to a granule potentially implies access to

4

the information it contains. Normally, the
term 'object' is used instead of 'granule';
however, this would be confusing here since
objects are not the only granules in DAC
for OMSs.

A subject is an active entity, e.g. aper­
son or a device, that causes information to
flow among objects or changes the system
state. We assume here that the OMS is
accessed by executing programs on behalf
of a (human) user4 •

An access mode, or simply a 111ode,
is a name for a set of OMS operations.

Access Right Determinations. Ac­
cess right determinations constitute the

state of the object base with regard to ac­

cess control. This state is used to com­
pute whether an intended access is per­
mitted (we call this the evaluation of the
state) and to explain the eff ect of opera­
tions which modify access rights.

An access right determination
(ARD for short) is a quadruple (S,G,M,V),
S being a subject, G a granule, M a
Mode, and V being a value which indicates
whether S shall be allowed to access G us­
ing operations in M. An ARD corresponds
to an entry in an access control list.

4 More precisely, we assume that the OMS has
an application programming interface and that
OMS operations can only be invoked by an ap­
plication program (viz. a tool of a design envi­
ronment). When deciding whether an intended
access is allowed the OMS needs to know on be­
half of which user(s) or subject(s) the access is to
be performed. Thus, there must be a mechanism
which conveys this information to the OMS. The
details of such a mechanism are irrelevant for the
concepts presented in this paper; they can vary
considerably depending on the implementation of
the OMS, the binding between an application and
the OMS, and the process model of the underly­
ing operating system. Such a mechanism includes
normally means for the identification and autho­
rization of human users. Examples of such mech­
anisms are processes in operating systems or ses­
sions in transaction processing systems.

p894b10

2.2 Data Granules

2.2.1 Structurally Object-Oriented
Database Systems

This subsection introduces structurally ob­
ject-oriented OMSs and complex objects in
order to give some intuitive understanding
of the data granules occurring in OMSs.
We abstract from all details of concrete
OMSs which are irrelevant for our DAC
concept. Readers familiar with OMSs may
skip this subsection.

Basic Concepts. Structurally object­
oriented OMSs [Di86] have inherited con­
cepts from database systems and file sys­
tems. We assume that their data model
is an extension of the entity-relationship­
model [Ch76]. Examples of such
OMSs are Base/OPEN [BA89], CAIS-A
[CAIS88], CWS/OMS [Ha&89], DAMO­
KLES [DAMO88]. GPI/OMS [GPI89,
Pe89], PCTE+/OMS [PCTE+88], PVS
[PVS87] and many others.

An object base contains objects and
relationships. A relationship connects
objects which play a "role" in this relation­
ship. Objects and/or relationships have
attributes. 5

Complex Objects. A distinguishing
feature of structurally object-oriented
OMSs are complex objects. Complex
objects allow to directly represent typi­
cal hierarchical structures, e.g. module
graphs, documents, etc., as one complex
object in the OMS. Figure 1 contains an
example of a deeply nested complex ob­
ject which might represent the data of a
complete development project.

5 Objects, relationships and attributed are
typed. Typing is not relevant for access controls
for object instances, but, of course, for access con­
trols on the type level (see section 7.1).

.s

In general, a complex object consists of
a set of attributes, a set of direct com­
ponents and a set of internal relation­
ships. We will refer to the set of attributes
as "root node". Components are again
(complex) objects. Interna! relationships
of an object are relationships between this
object and its direct and indirect compo­
nents or between components of this ob­
ject.

An atomic object is just a special case
of a complex object, namely one without
components or internal relationships. We
will therefore simply refer to "objects" in
the following.

Data Manipulation. We assume here
that OMSs rely mainly on navigation for
locating objects. Navigation in OMSs is
similar to navigation in hierarchical file
systems and completely different from nav­
igation in network databases6

.

The OMS provides operations to copy,
delete, versionize, lock, move, etc. arbi­
trary complex objects. Only the attributes
of the object, viz. the root node, can be
accessed directly; accessing attributes of
a component object requires typically to
navigate to this component object, e.g. via

• pathnames of objects.

Shared Objects. Two complex objects
can share a component; such a component
is called a shared object. vVe assume
symmetrical sharing, that is none of the
outer granules stands out from the others 7 •

6For example, there is no concept of
owner/member records [NDL87].

7 An example for symmetrical sharing in figure
1 is the object moduleJ:iierarchy. The designers
and developers can both write this object.

Asymmetrical sharing means that the way in
which a shared object can be accessed depends on
the outer granule from which is it accessed. Typi­
cal examples for asymmetrical sharing are library
elements, e.g. the object 'library Jnodule' in figure
1.

p894bl0

library_
module

6

Figure 1: Nested complex objects (Ellipses represent objects, hold arrows "component-of"
relationships. Attributes are not shown. Note that moduleJiierarchy is a shared object.)

The overall component-of structure in an

A write right on the complex object mod­
ule_hierarchy, which is granted to the designers of
subsysteml, should not allow to write this library
object, but only allow to write all non-library
components of 'moduleJiierarchy'. This could be
called a second class component-ofrelationship be-­
tween both objects. Second-dass components are
not treated as part of the complex object in some
operations.

A write right on the complex object moduleJi­
brary, which is granted to the administrator of
the library, must, of course, allow to write all li­
brary modules. This could be called a first class
component-of relationship between both objects.

First and second dass components of an ob­
ject should be treated differently in several oper­
ations on complex objects, e.g. copy, delete, ver­
sionize, archive, lock, move to another segment,
etc. (They should therefore be distinguished by
the data model.)

In PVS [PVS87] for example, each object except
the root object has exactly one first dass super­
object and arbitrarily many second dass superob­
jects. PRODAT [BaBK88] allows to distinguish

OMS is acyclic, but not necessarily a tree.

normal components, which are first dass, and li­
brary element components, which are second dass.
PCTE and GPI/OMS [GPI89] provides only first
dass component-of relationships. One could also
define that a first dass component automatically
becomes a second dass component as soon as it is
shared (this seems to be proposed in [DiHP88]);
this approach does, however, not adequately re­
flect the desired access rights in both above exam­
ples.

With regard to access rights, second class com­
ponents of an object should not be regarded as com­
ponents at all, i.e. an access right on a complex
object should not imply any access rights on a sec­
ond dass component. A required access right on a
second dass component, which is almost always a
read right, should be granted independently from
rights on the superobject. Therefore, we will not
discuss second dass components and asymmet­
rical sharing any further here. Note, however,
that the ability to distinguish first and second
dass components is a very useful feature of a data
model.

p894b10

In all, there is a hierarchy of nested, over­
lapping complex objects.

2.2.2 General Definitions

Objects are not the only granules in our
DAC concept. Therefore, we introduce
general definitions to express the nesting
of granules.

We call a granule G2 an inner gran­
ule (or component) of granule Gl if it
is contained in granule Gl; conversely, Gl
is called an outer granule of G2. The
nesting structure of granules is, of course,
acyclic8• Fora granule G, PARTS(G) de­
notes the set of all direct and indirect inner
granules of G, including G itself.

A granule is called shared if it is inner
granule of two outer granules which are not
inner/outer gr.anule of each other.

2.2.3 Basic Features of Our DAC
Concept

The following are granules9 :

• complex objects

• root nodes of objects

• relationships

The set of attributes of a relationship
needs not to be a granule because the ac­
cess modes for the "pure" relationship and
the attributes of a relationship are disjoint
(see section 6).

Although it would be useful in some
cases if single attributes were granules, too,

8 In some OMSs, the whole object base is also
a granule, in fact the "outermost" granule.

9This set of granules refers to our assumptions
about the data model (see section 2.2.1), which ab­
stracted from many details of concrete data mod­
els. A concrete data model may have additional
features which lead to further granules. For exam­
ple, ifthe OMS supports versioning ofobjects then
single versions and version sets should be granules.

7

this would introduce too much process­
ing and storage overhead10 . If different
attributes shall have different ARDs then
other data structures must be used: these
attributes must, e.g., be allocated at suit­
ably placed component objects, which can
have individual ARDs.

The "inner granule" structure is as fol­
lows: an object contains its root node, its
component objects and its inner relation­
ships. Root nodes and relationships do not
have inner granules.

2.2.4 Main Problems

Nesting and Intersection of Objects.
An access right for a complex object must
be valid for all its components. For exam­
ple, a read right for a complex object must
imply that the whole object, including all
components, can actually be read. This
means that an access right for a complex
object implies implicit access rights for
all components.

An access right for a complex object
should remain valid even if the set of com­
ponents of the complex object changes.

The most important problem for access
controls in OMSs is that complex objects
can overlap. Note that a shared object is
contained in two or more complex objects
which are not component of each other.
Thus, several implicit access rights, which
might be contradicting, could apply for a
shared object.

Ownership. Complex objects cannot al­
ways have an owner: lt must be possi­
ble that components of a complex ob ject
are exclusively owned by different subjects.
Thus it must be possible that a complex
object does not have an owner. However,
one must be able to reach again a state in

10Conceptually, it would be no problem to have
single attributes as granules.

p894b10

which one can modify access rights.

Conversely, an owner of a complex ob­
ject very often wants to enforce to re­
main owner of the complete complex ob­
ject, even when other subjects are allowed
to change the structure of the complex ob­
ject, e.g. to insert new components11 • This
problem occurs also in UNIX-like directory
structures: assume user A owns a directory
and user B inserts a new file into this di­
rectory. Then user A is no longer owner of
the directory and all its "components".

2.3 Subjects

vVe make certain assumptions about how
projects which use an OMS based environ­
ment are organized into groups. These as­
sumptions and the resulting problems will
now be explained.

2.3.1 Nested Working Groups

Working groups in a project are formed ac­
cording to a repeated division of the over­
all task of the project into smaller tasks.
Work may be divided

• quantitatively, e.g. a system is divided
into subsystems which are developed
independently, or

• qualitatively, e.g. according to usual
roles in a project (analyst, de­
signer, programmer, manager, techni­
cal writer etc.).

An example of a nested group structure
is given in figure 2. This example has a
tree structure. In general, there can be
a partial order of groups. In our exam­
ple, the design/review groups and qual­
ity_assurance might have a common sub­
group, or the implementers of all subsys­
tems, etc.

11 In fact, similar examples can be found for
other access modes.

8

We assume that the subgroups of a
group contribute to the overall task of this
group. Note that groups are entities of
their own right, they are not identified by
their current set of members.

2.3.2 General Definitions

Users and groups are entities man­
aged by the OMS. They can be subjects
in ARDs. The set of groups has an
acyclic, transitive "subgroup-of" structure

d " b f'" an users or programs are mem er-o
groups.

For a subject S, let MEMBERS(S)
denote the set {S} if S is a user or program
and the set of users or programs which are
member of S or any of the transitive sub­
groups of S if S is a group.

Note that there are now two interpreta­
tions of the term 'group': a "real world
group" is a set of people, a "technical
group in the OMS" is a technical feature of
the access controls in the OMS. We assume
that there are suitable means (identifica­
tion and authentication procedures) which
enforce that a technical group in the OMS
and a real world group correctly relate to
each other. The "technical" definition ap­
plies in the context of all discussions about
DAC within the OMS.

The same remarks apply to the terms
'subgroup' and 'user'.

2.3.3 Basic Features of Our DAC
Concept

Any group-oriented DAC must offer the
following general basic features (which will
be assumed in the rest of this paper):

• Groups can be directly represented in
the OMS, that is groups are a techni­
cal feature of the DAC of the OMS.

• Groups can be the subject of access
right determinations.

p894b10 9

management quality_

Figure 2: A group structure

• The structure of subgroups is explic­
itly represented in the OMS and ex­
ploited in the evaluation of access
right determinations.

• Arbitrarily many access right deter­
minations (with different subjects) for
one object are possible.

• A user can be a member of arbitrarily
many groups.

In addition to the above general basic
features, our DAC concept has the follow­
ing additional features:

There is an additional type of subjects:
programs. A program is an object with
an attribute of type string or long field
which is executable.

There is one predefined group WORLD.
The "subgroup of" structure between
groups is acyclic and has one root, the
group WORLD.

A user or program can be a member of
several groups12 • Each user is member in

12 All subjects, "subgroup of'' relationships, and
"member of" relationships are represented in the
OMS as objects or relationships of certain prede­
fined type.

at least one group13 . One can enforce pure
"user groups", i.e. groups which can have
only users as member and only user groups
as subgroups. The same holds for pure
"program groups" 14 .

2.3.4 Main Problems

Activation of Groups. A very impor­
tant question is whether a user should be
able to activate15 several groups (in which
she/he is a member) at the same time and
to exploit their rights:

• lf this is possible then several prob­
lems arise; the most important one
is: Different groups can correspond to
different roles which may be mutually
exclusive, for example the producers
and reviewers of a document. Gener­
ally, activating more than one group
contradicts directly the least privilege

13 As a consequence, each user is direct or indi­
rect member of the group WORLD.

14These restrictions on membership do, how­
ever, not affect our concepts and are therefore not
discussed any further.

15We assume that the rights of a group can only
be exploited if this group has been "activated",
e.g. through an explicit command of a user.

p894bl0

principle, and is therefore unaccept­
able in security-critical environments.
As a consequence of these problems,
it is often argued that the activation
of more than one group should not be
possible at all.

• If only .one group can be activated at
a time then a technical group must be
(explicitly) given all rights required by
this group and it is not possible to fac­
tor out rights which are common to
several groups. This causes an unac­
ceptable overhead in terms of mainte­
nance effort and storage overhead.

We conclude that it must not be al­
lowed to activate arbitrary groups at the
same time, but that means are required
which allow a controlled activation of sev­
eral groups.

Combination of ARD Values. Acti­
vated groups can have different values in
their ARDs for the same object and mode.
Thus, a rule must be developed about how
to combine these values.

2.4 Access Modes

There are only minor problems for DAC
in OMSs due to access modes: due to the
complexity of the data model, the num­
ber of access modes must be higher than
in other systems. The full list of modes
in our DAC concept will be presented in
section 6.

2.4.1 General Definitions

Each granule G is assumed to have one par­
ticular type TYPE(G). The set of generic
OMS operations applicable to a granule
depends on its type16. For example, there

16If an OMS operation involves several granules
which are not inner/outer granule of each other
then we regard each granule to be accessed sep-

10

are different operations for objects and re­
lationships. Let OPS(T) denote the set of
operations applicable to granules of type
T.

An access mode, or simply a 1node,
is a name for a set of OMS operations.
More precisely, an access mode M asso­
ciates with each type T a set of operations
M(T), which is a subset of OPS(T). For
example, mode 'read' associates different
operations with complex objects and with
root nodes (see section 6).

2.5 Distribution

Design environments are typically basecl
on workstations and servers which are con­
nected by a local area network. We as­
sume that the object base is distributed
over the network. This requires that the
object base is partitioned into several seg­
ments which can be independently stored,
e.g. in a file or a "raw volume". Moreover
we assume that certain types of volumes,
e.g. tapes, floppy discs or even local harcl
discs, can be temporarily dismounted.

Finally, we assume that a complex ob­
ject can be distributed over several sites,
that is the root node and components can
reside on different sites.

2.5.1 Main Problems

lt can happen in distributed systems
that single sites are non-operational (e.g.
switched off) or unreachable (e.g. due to
a network failure) or that a volume which
contains a segment is dismounted. A very
important design goal is therefore to re­
main resilient against the unavailability of
segments. lt should be possible to per-

arately. For example, the creation of a relation­
ship between objects A and B implies an access
to both A and B. In such cases, suitable access
rights must be available on all involved granules
to perform this operation.

p894b10

form sensible work on a site with the seg­
ments reachable at this site17. Dependen­
cies on data stored in other segments must
be strictly avoided. (Communication de­
lays are another reason for this design pol­
icy.) As a consequence, objects and their
ARDs must be stored in the same segment.

The above remarks and our assumption
that a complex object can have compo­
nents on different sites imply that the ac­
cess controls must be designed in such a
way that it is possible to decide whether an
intended access to an object is allowed by
using only ARDs of this object, and with­
out using ARDs of superobjects or subob­
jects (which might be stored in a different
segment).

3 Access Right Deter­
minations

ARDs, which have already been intro­
duced in section 2.1, are a central notion
of our DAC concept. This section presents
a refined definition and related design de­
c1s10ns.

Access Units. With the above defini­
tions of granules, subjects and modes, we
are now able to formally specify the no­
tion "access" and, more importantly, sets
of accesses.

Let s be a user ~r program, let g be a
granule, and let o be an OMS operation in

17This requirement is the main reason why a dis­
tributed OMS which allows to freely move objects
between segments (e.g. PCTE) does not have re­
lational query facilities which would allow to treat
all instances of an object type as a base relation:
Instances of the object type can normally be cre­
ated on, or moved to, any workstation. Conse­
quently, a query must be executed on all (!) work­
stations and cannot terminate if only one worksta­
tion or volume is unavailable. In medium to large
en vironments with 10 - 100 or even more sites with
local disc, this is untolerable.

11

OPS(TYPE(g)). Then (s,g,o) denotes an
elementary access, i.e. granule g is ac­
cessed through operation o by, or on behalf
of, subject s.

Let S be an arbitrary subject, G be an
arbitrary granule stored in the OMS and M
be an access mode as defined by the DA C
mechanism of the O MS (the set of access
modes is normally static, but the follow­
ing does not depend on this assumption).
Then the access unit (S,G,M) denotes
the following set of elementary accesses:

{ (s,g,o) 1 s E MEMBERS(S),
g E PARTS(G),
o E M(TYPE(g))}

Access Right Determinations. Ac­
cess right determinations constitute the
state of the object base with regard to access
control. The state is defined to be a func­
tion access which maps the set of current
access units onto a set of access values. In
other words, for each triple (S,G,M), ex­

actly one ARD (S,G,M,V) is valid in the
OMS.

Two possible values and their meanings
are:

access(S,G,M) = '+': the accesses of
this unit are allowed.

access(S,G,M) = '-': the accesses of
this unit are not allowed.

Further values will be defined below.

We use the notation access(S,G,M)
:= V to express that the state is changed
such that access(S,G,M) = V holds after
the change.

Ownership. Modification of ARDs for a
granule G (i.e. access(S,G,M) := V) is also
considered to be an operation on G; i t is
covered by one specific access mode called
'control'. Subjects which have permission

p894b10

to modify ARDs for a granule G are also
called owners of G.

We assume (like PCTE) the "laissez­
faire" approach to access permissions (see
[Do&85]), i.e. we allow several equal own­
ers of a granule. 18

4 Subjects and the Ac­
tivation of Groups

This section gives only a short description
of the features of our concept which are
related to subjects. A more detailed de­
scription can be found in [Ke90].

Group Paradigms. A distinguishing
feature of group-oriented DAC is that the
subgroup structure is explicitly maintained
and exploited. This, however, leads to the
question: what is the semantics of the sub­
group structure '? A group paradigm is
a set of assumptions and rules about why
and how, given a real world group struc­
ture, technical groups and subgroups in the
OMS are formed, which rights are given to
them, and how these rights are combined
(s. [Do&85]). Our concept supports two
paradigms:

Under the rights package paradigm,
a group corresponds to a set (a "pack­
age") of rights which shall be given to sev­
eral users. The main reason for support­
ing the rights package paradigm is that it
allows to efficiently manage access rights.

A subgroup of a group G has less mem­
bers, which have potentially more common
rights than the whole group. Thus, sub­
groups have more rights than supergroups.
This is to be achieved by letting the sub-

18In our concept, one can impose a total or­
der on the owners of a granule through ownership
of outer granules. This may require to introduce
dummy outer granules. Details will be explained
in section 5.

12

groups automatically and implicitly inherit
the rights of their supergroups.

In order to exploit the inheritance of
rights of supergroups (and in view of the
goal to efficiently manage access rights)
rights should be granted according to the
delta rule: a group is given the rights
needed by its members except those rights
already granted to one of its supergroups.

Under the task paradigm, a group
corresponds to a task which it shall solve.
The group is given the rights required to
solve this task. Only users which can act
in the name of the group, and which we
call administrators, are members of the
group under the task paradigm. A sub­
group has less rights than its supergroups
since it deals only with a subtask.

Realization of the Rights Package
Paradigm. Accesses to the object base
are _performed by executed programs, i.e.
processes19 . The following subjects are
active for a process:

• the user on behalf of whom the pro­
cess runs;

• one explicitly activated group in which
this user is a member, and all di­
rect and indirect supergroups of this
group;

• all groups in which the executed pro­
gram is member, and all direct and
indirect supergroups of these groups.

Informally, the rights of all active
groups are "added". In the simplest case,
the process can perform an access if at
least one subject is allowed to do this. A
precise definition how the rights of the ac­
tive groups are combined is given below.

19Processes are not necessarily understood as
operating system processes here (see also footnote
4).

p894b10

Realization of the Task Paradigm.
There are several ways to realize the task
paradigm. Due to space considerations, we
will present only one of them (a second one
can be found in [Ke90]):

• to each group G, a subset A(G) of
administrators of G is associated.
This set of users is not a technical
group of its own right. Adminis­
trators, being members of G, inherit
rights from the supergroups of G.

• In addition, administrators "inherit
upwards" from all subgroups of G
(but not from the users which are
members of the subgroups). In other
words, whenever a subgroup S of G
is subject of an access rights determi­
nation then members of A(G) can ex­
ploit this right.

This solution does not cause much over­
head: There are straightforward ways to
represent the subset A(G). The "upwards
inheritance" can be implemented as fol­
lows: if a member of A(G) explicitly ac­
tivates group G then all subgroups of G
are activated implicitly. ARDs of several
active subjects are combined in the same
way as specified above, with the following
exception: ARDs for subgroups of G with
value - are not considered.

A New ARD Value. The rights pack­
age paradigm leads to situations in which
several groups are active. This causes a
problem if there are only two ARD values.
Assume the following situation:

• group S1 has a certain right, that is
access(S1,G,M) = '+' for some gran­
ule G and mode M;

• S2 is a subgroup of Sl.

According to the delta rule, S2 should
not have this right again, that is
access(S2,G,M) = '+' should not hold.
However, access(S2,G,M) = '-' would have

13

to interpreted in the sense that S2 must not
be able to perform operations of M on G;
this is quite contrary to what was intended
in this situation.

A solution to this problem would be an
ARD with a value which neither allows
nor denies the accesses of an access unit
((S2,G,M) in our example). We call such
an ARD value undefined (? for short).

lt will later turn out that one undefined
value is not sufficient (due to the nesting
of granules). We will defer this discussion
and assume for the rest of this section that
granules do not overlap.

Evaluation of ARDs. We are now able
to specify how the ARDs of several sub­
jects are combined. A process is allowed
to perform operation o on a granule G iff

• there is a mode M such that o E M
and such that there is an active sub­
ject S such that access(S,G,M) = '+',
and

• there is no mode M such that o E M
and such that there is an active sub­
ject S such that access(S,G,M) = '-'.

In other words, ARDs of active subjects
are combined according to the logic shown
in table 1.

+ ? -

+ + + -
? + ? -

Table 1: Combination of ARD values

lt is not necessary to consider ARDs for
outer granules of G due to reasons which
will become clear in section 5,

5 Granules

This section explains important aspects of
our concept which are related ta granules.

p894bl0

The main problems addressed are the over­
lapping of complex objects and the effi.cient
implementation of the evaluation of ARDs.

5.1 ARDs for Nested Gran­
ules

Derived vs. Dominating ARDs.
There are two basic design choices concern­
ing the nature of ARDs of complex gran­
ules:

The ARDs are derived from the ARDs
of the components of this granule. When­
ever an ARD of a component is changed
the ARD of the whole granule can change
as a side-effect. The obvious problem is
that such side-effects may be unwanted. A
typical example is the ownership problem
mentioned in -section 2.2.4. With derived
ARDs, it is impossible to enforce consis­
tent access rights for all components of a
granule.

ARDs of a granule dominate (i.e. take
precedence over) ARDs of components.

We adopt this approach because it re­
moves the problems mentioned above.

Additional ARD Values. We come
back to the problem that several groups
might be activated at the same time and
that they might have different ADR values
for the same object and mode.

Assume that groups S1 and S2 are ac­
tive for a process and that

access(S1,G,M) = '+', and
access(S2,G,M) = '?'.

We have to define the result of the combi­
nation of the values + and ? .

Assume further that G is a complex ob­
ject. Now we have to distinguish two cases:

• if there is no inner granule G 1 of G
such that access(S2,Gl,M) = '-' then
the process is allowed to execute op-

14

erations in M on G, that is the com­
bination of the values + and ? is +.

• Otherwise, the process is not allowed
to execute operations in M on G, that
is the result of the combination is - .

We conclude that, in case of complex
granules, the ARD value ? does not contain
enough information to compute its combi­
nation with +. As a result, it would be nec­
essary to scan all inner granules of G for a
relevant denied ARD. This is unacceptable
because of the overhead, distribution and
other reasons (see section 2.5.1).

This problem leads us to introduce two
new ARD values instead of ? , namely

?+ (or "positive undefined") and

?- (or "negative undefined").

Both indicate that no statement is made
whether accesses of a whole access unit
(S,G,M) shall be allowed or denied. The
meaning of both values differs as follows:

?+ indicates that there is no inner granule
Gl of G such that access(S,Gl,M) =
'-' or '?-'.

?- does not impose any such restriction,
that is there can be zero, one or
more inner granules Gl of G such that
access(S,Gl,M) = '-' or '?-'20

.

The value ?- is only meaningful for
granules which can have inner granules,
that is only for objects. The value ?- is
therefore only applicable to ARDs concern­
ing objects.

The evaluation rule remains the same as
specifi.ed above with the addition that the
value ?+ is treated like? and that the value
?- is treated like -. The combination logic
of all four values is shown in table 2.

20 Both values allow a situation in which there is
no inner granule with denied ARD. The difference
between both values is that ?- allows to insert an
inner granule with denied ARD, whereas ?+ does
not allow to do this. Note that ?+ and ?- are in
some sense similar to intention locks [Ko83].

p894b10

+ ?+ ?- -

+ + +
?+ + ?+
?- -

Table 2: Combination of 4 ARD values

5.2 Consistency Rule for In-
ner Granules

A new problem caused by dominating
ARDs is that, given a shared granule G,
it may have two outer granules which are
not inner/ outer granule of each other and
which have with contradicting ARDs. This
situation is semantically inconsistent and
must be avoided. Therefore, we introduce
the following consistency rule:

ff G2 is an inner granule of Gi then
- access(S1 Gl,M) = '+' implies

access(S,G2,M) = '+',
- access(S,Gl,M) = '?+' implies

access(S, G2,M) = '+' or '?+\

- access(S,GJ,M) = '-' implies
access(S,G2,M) = '-'

There is no such rule for the value ?-.

Any attempt to set ARDs such that
the consistency rule would be broken is re­
j ected.

The consistency rule offers several very
important advantages, both with regard
to the clarity and implementability of our
concept:

Conceptual Aspects. The consistency
rule prevents complicated situations which
are difficult to interpret and to understand
by users and which are likely to lead to er­
roneous results when users change ARDs.

In fact, if there are any implicit ARDs
for a granule then their value is the same

15

like the value of the explicit ARD 21 . Con­
sequently, implicit ARDs need not be con­
sidered at all in the evaluation of ARDs!

Without the consistency rule, the no­
tion of an implicit ARD must be part of the
concept22 and there needs to be a compli­
cated definition how ARDs are evaluated.

Implementation Aspects. We assume
that all ARDs for an object are stored in
an access control list23 (ACL) for this
object. The important point is that the set
of all ARDs of an object can be retrieved
and changed very efficiently. 24

We assume (like PCTE) that the root
node of a complex object and a component
object can reside on different sites (or vol­
umes). Because of the reasons mentioned
in section 2.5.1, it must be possible to eval­
uate the ARDs of an object O without ac­
cessing the ACL of an outer or inner gran­
ule ~f O which resides on another segment.

This problem gives another strong mo­
tivation for the consistency rule for inner
granules: without this rule, implicit ARDs
would be relevant in the ARD evaluation.
The ACL of all outer granules whose root
node is stored on another volume woulcl
have tobe available; thus they would have
to be copied into the segment in which 0
is stored, at least in the case of all gran­
ules which have direct outer granules on a
different segment (note that this may even
apply for relationshi ps). This would leacl

21 Note: an ARD with value ?+ or ?- for a com­
plex object does not imply any implicit granted or
denied ARDs for the inner granules.

22 Note that we have introduced this notion only
for a discussion of general problems and design al­
ternatives.

23 An ACL is often understood as an ordered set
of ARDs; in our model, it is an unordered set.

24It is not strictly necessary to store an object
and its ACL on the same disc page. However, in a
distributed OMS (or an OMS with removable vol­
umes) both must reside on the same site (or the
same volume); see section 2.5.1. . ..-:::\··1·v·~

/ ' ' 'f');'\~ / .~,,, .. .;; ~'1-01~~
f . ._, ~:;.,
'.·' ~?:!.

1 • HAGEII •;·
\\ ~ tJ !
I' ...:, /:1:::: /
>\.".Ä ~/'

~-~~~~!

p894bl0

to a substantial storage and maintenance
overhead.

If a complete complex object is stored
within one volume - which is the nor­
mal case - then one can save substantial
amounts of storage space: ARDs for the
complex object need not to be repeated in
the ACL of the components. The price for
this is that the evaluation of the ARDs of
a component object requires to scan the
ACLs of the outer granules. Moreover,
changes of ARDs become more difficult to
implement.

However, access rights differ typically
only on the level of rather large objects,
e.g. whole document versions, in typi­
cal tools within a software development
environment. Objects below this level
do typically not have additional ARDs;
in other words, no ARDs at all need to
be stored for the Zarge number of small
objects. The boundary between large­
grain and small-grain objects can be deter­
mined statically within a schema (e.g. by
adopting the two-tier database approach
of ECLIPSE [CaA87]). Ideally, however,
the OMS should dynamically optimize the
space/time trade-off in the management of
ACLs.

Finally, it is very important that the
evaluation of ARDs is fast, in particular
for complex objects. This gives another
motivation for the consistency rule for in­
ner granules: without this rule, it would be
necessary to scan all inner granules when
determining whether an intended access is
allowed.

5.3 Operations

Basically, there is an Operation SetARD to
set an ARD and another operation GetACL

to query all ARDs of an object.

16

Propagation. A consequence of the
consistency rule is that two kinds of prop­
agation in SetARD become necessary:

• If access(S,G,M) is set to + or - then
this change must must be propagatecl
to all inner granules. More precisely,
if access(S,G,M) := V, V E { +,-},
then access(S,G',M) := V for all G'
E PARTS(G).

This rule applies also for the va.lue
?+ with the exception that ?+ is not
propagated to an inner gra.nule G' if
access(S,G',M) = '+'

• If access(S,G,M) is set to ?- then this
change must must be propagated to
all outer granules.

If access(S,G,M) is set to ?+ then
this change must must be propagated
to all outer granules except those
where access(S,G,M) = '?-'.

The above propagation rules apply con­
ceptually. An implementation of the con­
cept should actually be optimized along
the lines indicated in the previous sec­
tion. The resulting performance reduction
can in any case be tolerated because ARD
modifications are much less frequent tha.n
evaluations and are not time-critical.

Propagation into inner granules means
that the old value of access(S,G' ,M) is re­
placed by the new one. The consistency
rule for inner granules applies here: the
operation fails if the rule would be broken.
An example of such a situation is:

• G' is a component of both G and Gl
(i.e. G' is a shared object),

• access(S,Gl,M) = '-' a.nd, thus,
access(S,G',M) = '-', and

• assume the operation access(S,G,M)
:= '+' shall be executed.

This operation fails because the result
would break the consistency rule.

p894b10

Propagation to outer granules could oc­
cur as an inadvertent side-effect. There­
fore, SetARD must have a parameter which
specifies whether propagation shall occur
or not. If propagation shall not occur,
the operation fails if propagation would be
necessary.

If access(S,G,M) is set to ?- or ?+ and
if G has inner granules then the ARDs of
inner granules remain unchanged. If prop­
agation to inner granules is desired then
this can be specified by another parameter
of SetARD.

Changes of the Component Struc­
ture. There are operations which make
a granule G' a component of another gran­
ule G. G' can be "freshly created", for ex­
ample a new c?mponent or a new internal
relationship of a complex object is created;
in this case we assume G' to have an ini­
tial set of ARDs determined by the creat­
ing process. G' can also exist already, e.g.
an existing object is made a component of
another object, in particular in order to
share a component between two complex
objects.

One effect of these operations is that all
ARDs of G with value +, ?+ or - are propa­
gated into G', in the same way as explained
above.

The right to add or remove components
of an object is controlled by an own ac­
cess mode which is different from the mode
which controls writing of the attributes
(see next section). The operation which
makes an object O a component of another
object requires to be owner of 0.

6 Access Modes

This section gives a summary of the as­
pects of our concept which are related to
access modes.

17

There are 9 access modes. Table :3
shows for each access mode and each gran­
ule type whether the resulting set of oper­
ations is empty (by -) or non-empty (by a
number). A short description of each op­
eration set is given below.

access complex root relation-
mode object node ship
read 1 2 2
write - 3 3
delete 4 - 5

append - 6 6
execute - 7 7
navigate - - 8

mod_comp - 9 -
mod..rel - 10 -

control 11 12 12

Table 3: Operation sets for access modes
and granule types

1: copy the object

2: read the values of the attributes

3: modify the values of the attributes

4: delete the object

5: delete the relationship

6: append to the values of the at­
tributes (applies only to long fields
and strings)

7: execute the values of the attributes (ap­
plies only to long fields and strings)

8: navigate along the relationship

9: insert or delete direct components of
the object

10: append a relationship to the object

11: change ARDs for this granule, make
the object a component of another ob­
ject

12: change ARDs for this granule

Note that an ARD for an object can im­
ply ARDs for its inner granules which may

p894b10

have a different type. For example, the ap­
pend right on an object implies that there
is also an append right on the root node
which enables to append to all attributes
of this object which have the type long field
or string.

There are no inclusions of access modes.
For example, the set of operations asso­
ciated with 'write' right does not include
the set of operations associated with 'read'.
Inclusions lead to considerable complexity
and additional special concepts. If desired
they should be maintained by a tool which
is used to modify ACLs.

7 Discussion

7 .1 Extensions

There is an important extension of our ap­
proach which has not been presented here
due to space considerations: There are also
access controls on the type level, in addi­
tion to the controls on the instance level.
For example, it is possible to grant only
the group 'managers' the right to read and
write objects of type 'managementJeport'.
In general, subjects can be allowed or de­
nied to access user-defined types of ob­
jects, attributes or relationships. This con­
cept mainly serves as a "filtering mecha­
nism" which allows to filter out parts of
a complex object which belong to a spe­
cific role. Type level access controls al­
low to realize important access control fea­
tures known from conventional database
systems, viz. account level privileges and
restrictions of the visibility and accessibil­
ity of fields or relations in the same way
like external schemata. Types have own­
ers like ordinary objects, only owners can
grant or revoke type rights. Finally, inher­
itance hierarchies of object types are sup­
ported.

18

7.2 Other Approaches

Although the importance of object- and
group-oriented access controls in OMSs
has been emphasized at many occasions,
there are actually only very few attempts
to develop concepts to solve the relatecl
problems.

Some proposals cannot sensibly be com­
pared with our proposal because they re­
fer to a substantially different data moclel
(even though it is also called "object­
oriented"). For example, some object­
oriented DBS are extensions of conven­
tional relational DBSs and have kept an
SQL-like query language and data-depen­
dent views as main DAC mechanism.

[FeGS89] for example presents a DAC
concept for such "relational" OMSs. lt
mainly addresses type-level access controls
and does not deal with hierarchical com­
plex objects, sharing, or distribution.

In the following, we will only discuss
DAC concepts which are compatible with
our assumptions about the data model of
the OMS.

[CAIS88] and [PCTE+88] present ac­
cess control mechanisms which support
nested groups, but they do not support
nested complex objects and the task para­
digm.

[KiBG89] presents a mechanism which
supports complex objects as granules, but
without a consistency rule as presented
here. As a consequence, a highly compli­
cated scheme for implicit ARDs on compo­
nent objects needs tobe introduced. Nest­
ing of groups is not supported. lt would be
very difficult to do this without a consis­
tency rule for inner granules. By he same
reasons, it would be difficult to extend this
approach on distributed OMSs.

An object management system with
advanced access control features is PVS
[PVS87]. The main difference between our

p894b10

concepts and PVS is that PVS is based
on asymmetric sharing (see footnote 7),
1.e. each shared object has one "main"
superobject. Symmetrical sharing, which
we have chosen, offers advantages over
asymmetric sharing in many applications.
Asymmetrie sharing simplifies many prob­
lems; e.g. it allows to use simple rules for
combining "implicit" ARDs of a shared ob­
ject. Consequently, PVS does not have a
consistency rule for ARDs of inner gran­
ules. Moreover, PVS has only two ARD
values, which correspond to + and ?+.

A completely different approach to
group-oriented access controls in an OMS
is taken in DAMOKLES [DAMO88].
DAMOKLES separates the complete data­
base into segments called 'database'. Each
'database' is owned by one user or user
group. User groups have a hierarchical
(i.e. partially ordered) structure. A user or
group can arbitrarily access its own 'data­
bases' and under certain restrictions the
'databases' of super- and subgroups. In
other words, all objects within one 'data­
base' have the same ARDs. This allows to
simplify access controls considerably. If an
object shall be accessed by several groups
then it may become necessary to copy the
object into several 'databases'; this is the
most important disadvantage of this ap­
proach. Copies can be produced using the
commands copy or check-out. The copies
can be changed independently (with some
exceptions for check-out copies); thus it is
not always possible to simulate an object
with n ARDs by copies of this object in n
different 'databases'.

Relation to Group Transactions.
The problem of supporting nested working
groups which use a design environment has
also been addressed by another concept,
namely design and group transactions (e.g.
in [BaKK85, Kl&85]). One of the features

19

of such transactions is that they realize
nested private databases for nested work­
ing groups. Objects are exchanged be­
tween these databases via check-out ancl
check-in operations. The privacy aspect of
group transactions can easily, and shoulcl,
be implemented with group-oriented DAC
[Ke89]. Moreover, if an OMS provicles
DAC then group transactions are only
practicable if the DAC supports the task
paradigm, because check-out and check­
in usually include copying or versioning of
complex objects.

Acknowledgements

The concepts presented in this paper are
an extension and evolution of the concepts
developed in the German PCTE Initia­
tive (GPI89, Pe89] which are themselves
an evolution of the concepts of PCTE+ is­
sue 3 [PCTE+88]. Moreover, the author
has gained many insights from discussions
with other members of the ECMA Techni­
cal Committee 33 (PCTE) and its tech­
nical working group TGEP. The author
would like to acknowledge the contribution
of all members of these groups to his work;
particular thanks are due to R. Minot, E.
Petry and M. Simon.

References

[BA89] Base/OPEN Database Manage­
ment System, CDDL and NQL
Reference Manuals; TeleLOGIC
Sundsvall AB; 1989

[BaBK88] Batz, T.; Baumann, P.; Köh­
ler, D.: A data model supporting
system engineering; p.178-185 in:
Proc. COMPSAC; 1988

[BaKK85] Bancilhon, F.; Kirn, vV.; Korth,
H.F.: A model of CAD transac-

p894b10

tions; p.25-33 in: Proc. VLDB 85;
1985

[CaA87] Cartmell, J; Alderson, A.: The
ECLIPSE two-tier database inter­
face; in: Proc. ESEC 87, Stras­
bourg; 1987

[CAIS88] Gommon Ada Programming
Support Environment (APSE) In­
terface Set (CAIS), Revision A;
DoD-STD-1838A; 1988/05

[Ch76] Chen, P.P.: The entity relation­
ship model: towards a unified view
of data; ACM ToDS 1:1, p.9-36;
1976/03

[DAMO88] DAMOKLES Data-
base Management System for De­
sign Applications, Reference Man­
ual, version 2.0; FZI, Karlsruhe;
1988/03

[Da83] Date, C.J.: An introduction to
database systems, vol. 1 & 2;
Addison-Wesley; 1983

(De82] Denning, D.E.: Cryptography
and data security; Addison-Wesley;
1982

[Di86] Dittrich K.R.: Object-Oriented
Database Systems: The Nation and
the Issues; p.2-4 in: Proc. ACM
/ IEEE Int.1 Workshop on Object­
Oriented Database Systems, IEEE
Catalog Nr. 86TH0161-0; 1986

[DiHP88] Dittrich, K.R.; Härtig, M.; Pfef­
ferle, H.: Discretionary access con­
trol in structurally object-oriented
database systems; in: Proc. IFIP
WG 11:3 Workshop on Data­
base Security, Kingston, Ontario,
Canada; North-Holland; 1988

[DOD83] Department of Defense trusted
computer system evaluation crite­
ria; DOD document CSC-STD-001-
83; 1983/08

20

[Do&85] Downs, D.D.; Ruh, J.R.; Kung,
K.C.; Jordan, C.S.: Issues in dis­
cretionary access control; p.208-218
in: Proc. 1985 Symp. on Security
and Privacy, Oakland, April 22-24,
1985; 1985

[EURAC89] Requirements and Design cri­
teria for Tool Support Interface,
Version 4; Report, IEPG TA 13;
1989

[FeGS89] Fernandez, E.B.; Gudes, E.;
Song, H.: A security model for
object-oriented databases; p.110-
115 in: Proc. 1989 Symp. on Secu­
rity and Privacy, Oakland; 1989

[FeSW81] Fernandez, E.B.; Summers,
R.C.; Wood, C.: Database secu­
rity and integrity; Addison Wesley;
1981

[GPI89] German PCTE Initiative: Intro­
duction to the specifications of the
GPI-OMS-Data-Model; GPI; 1989

[GPI89a] German PCTE Initiative: Re­
quirements for the enhancement
of PCTE/OMS, Version 2.0; GPI;
1989/03

[GrS87] Greif, I.; Sarin, S.: Data shar­
ing in group work; ACM TOIS 5:2,
p.187-211; 1987 /04

[Ha&89] Haabma, J.; et al.: The NMP­
CADLAB Framework; in: Proc.
IFIP TCl0/WGl0.5 Working Con­
ference on Very Large Scale Inte­
gration, Munich; 1989/08

[Hs87] Hsiao, D.K.: Database security;
Naval Postgraduate School, Mon­
terey, California, NPS52-87-048;
1987 /11

[ITS89] German Infor-
mation Security Agency: IT Secu­
rity Criteria (Criteria for the Eval­
uation of Trustworthiness of Infor-

p894b10

mation Technology Systems); Bun­
desanzeiger Verlag; 1989

[Ke88] Kelter, U.: Requirements on ac­
cess control mechanisms in ob­
ject management systems with au­
tonomous user groups (in German);
SWT Memo 31, Dep. Computer
Science, University of Dortmund,
ISSN 0933-7725; 1988/12

[Ke89] Kelter, U.: Gruppen-Transaktio­
nen vs. gruppenorientierte Zugriff­
srechte; p.287-300 in: Proc. GI
Jahrestagung 1989, Springer Ver­
lag; 1989/10 (english version avail­
able as: SWT Memo 37, Dep. of
Computer Science, STL, University
of Dortmund, ISSN 0933-7725)

[Ke90] Kelter, U.: Group paradigms in
discretionary access controls for ob­
ject management systems; to ap­
pear in: Proc. Ada Europe Interna­
tional Workshop on Environments,
Chinon, September 1989; LNiCS,
Springer Verlag; 1990

[KiBG89] Kirn, W.; Bertino, E.; Gara,
J.F.: Composite objects revisited;
p. 337-347 in: Proc. SIGMOD 89;
1989/02

[Kl&85] Klahold, P.; Schlageter, G.; Un­
land, R.; Wilkes, W.: A transaction
model supporting complex applica­
tions in integrated information sys­
tems; p.388-401 in: Proc. SIGMOD
85; 1985

[Ko83] Korth, H.F.: Locking primitives
in a database system; JACM 30:1,
p.55-79; 1983/01

[NDL87] ISO/TC97 /SC21/WG3: Data­
base Language NDL (ISO Standard
8907-1987(E)); ISO; 1987

[PCTE87] PCTE Project Team: PCTE:
a basis for a portable tool envi­
ronment; p.53-71 in: Proc. ES-

21

PRIT'86, Results and Achieve­
ments; Elsevier Science Publ.; 1987

[PCTE88] PCTE Interface Control
Group: PCTE - A Basis for
a Portable Common Tool Envi­
ronment, Functional Specifications,
Version 1.5; 1988/11/15

[PCTE+88] PCTE+ Functional Specifi­
cation, Issue 3; IEPG TA-13;
1988/10/28

[Pe89] Petry, E.: Access control in a
standard database for software de­
velopment environments (in Ger­
man); p.171-175 in: Proc. BTW89,
Springer Verlag, Informatik Fach­
berichte 204; 1989

[PVS87] System PVS from its users' point
of view, Version PVS/6 (in Ger­
man); Softlab GmbH; 1987

	Kelter_Group_Oriented_Titelblatt
	Kelter_Group_Oriented_Text

