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Abstract 

We slightly modify the semantics of Moss' and Parikh's topological 
modal language ([MP]). This enables us to study the topological modal 
theory of further classes of subset spaces. Subsequently we deal in par­
ticular with spaces where every chain of opens is finite. We axiomatize 
the logic of those quasi-finite spaces, and prove soundness und seman­
tical completeness of the proposed set of axioms. Moreover, it turns 
out that one can decide whether a given formula is a theorem of that 
logic. We also handle a somewhat wider dass of subset spaces, which 
satisfy a more general finite-descent-condition on the set of opens. 
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1 Introd uction 

A few years ago, Moss and Parikh introduced a new logical framework 
for reasoning about knowledge ([MP}). lts syntactical part appears as 
a bimodal language. But the semantics is quite different from the usual 
interpretation of bimodal formulae in corresponding frames. Instead 
of it, the underlying semantical domains are so-called subset-frames 
(X, 0), where X is a non-empty set, and O is a set of subsets of X. 
The elements of O are called opens, and indeed topologic, i.e. the logic 
of subset frames where O is actually a topology on X, was soon an 
object of intensive study ([Geo 1], [DMP]). 

How are the two modal operators - they will be denoted by J{ and 
D respectively - interpreted in subset-frames? Well, "D" captures the 
shrinking of an open, while "]{" captures varying over an element of 
0. - How is this related to reasoning about knowledge? In its simplest 
form, knowledge representation of agents ( e.g. processors in distribu­
ted systems) is modeled by the usual modal system S5. But herein 
only a static description is possible. More than that, to represent the 
dynamic process of knowledge acquisition is desirable by chance. Topo­
logical modal logic as proposed by Moss and Parikh offers (besides e.g. 
temporal approaches) an adequate opportunity to it. This becomes 
clear as soon as one notes that reducing the number of thinkable alter­
natives increases knowledge. Hence gaining more and more knowledge 
is in some sense a more and more accurate approximation. Since topo­
logical concepts are the right instrument to moc:lel approximations, we 
are rather naturally led to them within the posed problem. 

As already indicated above, the approximation steps are managed by 
the D-operator. Thus D models eff ort ( whereas J{ models - as usual 
- knowledge), and that in a non-deterministic way: the outcome of 
effort is not known in advance; this is captured in the formal semantics 
by admitting a complete set of refinements of a given open. As the 
effort-operator's issue is a descent w.r.t. a system of sets, its modality 
is naturally S4-like. 

At this point we take up a somewhat different view in comparison with 
[MP] . We assume that effort is m any case provided with success. 
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Thus D is no langer S4- but J{ 4-like in the present note. This is 
motivated first of all from a computational background: investment of 
computational resources certainly results in a better knowledge of the 
computed object (if the program is correct). 

In the following we study two logics ( one stronger than the other) which 
model situations where only finitely often effort can be successfully ap­
plied. The corresponding subset frames fulfil a finite-descent-condition 
on the set of opens respectively. 

After introducing the logica11anguage, we first give an axiomatization 
of the weaker system and prove its soundness and completeness w.r.t. 
the appropriate dass of frames. Moreover, decidability of the logic can 
be proved as well. Proofs use to a great extent complicated construc­
tions from [DMP]. Following up, the same results are obtained for the 
stronger system. But contrary to the weaker one, it satisfies the we11-
known finite model property: every formula not derivable in the system 
is falsified already in a finite model of the axioms. This latter property 
is proved via tree-like spaces considered recently by Georgatos [Geo 2], 
although we cannot apply Georgatos' results because of the modified 
semantics. 
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2 The Logical Language 

For the present in accordance with [DMP], we introduce a language, 
called topological modal logic (TM L), in the following way. The syntax 
of TM L is based upon a suitable alphabet containing in particular 
symbols in order to define the set PV of propositional variables. The 
set TM F of TML-formulae is then defined recursively by the following 
clauses: 

• PVU{T}~TMF 

• o:, ß E TM F ===} -, o:, ]{ o:, Do:, ( o: A ß) E TM F 

• no other strings belang to TM F 

We omit brackets whenever possible, and use the following abbreviati­
ons (besides the usual ones from sentential logic): Lo: for -,]{-, o:, Oo: 
for -,0-, o:. 

The semantical domains of TM L are generally triples (X, 0, a), where 
X is a non-empty set, 0 is a set of non-empty subsets of X, (possibly 
specified further ), and a : PV x X --t {O, 1} is a mapping ( called 
X -valuation). The pair S = (X, 0) is subsequently refered to as a 
subset fmme. The elements of O sometimes are called opens ( of S). In 
this note we concentrate on two special kinds of subset frames, which 
we call ( weakly) quasi-finite. 

2.1 Definition 

1. Let S = (X, 0) be a subset frame. S is called ( weakly) 
quasi-finite, iff every ( desending) C -chain in O (having 
non-empty intersection) is finite (" C " means proper 
inclusion). 

2. Let (X, 0) be a weakly (quasi-finite) subset frame, and 
a be an X-valuation. Then M = (X, 0, a) is called a 
weakly ( quasi-finite) subset space or a a weakly ( quasi­
.finite) model (based on (X, 0)). 
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We now define validity of TM L-formulae in models based on subset 
frames. As motivated in the introduction, our definition differs slightly 
from the usual one in [MP], [DMP], [Geo 1], and [Geo 2]. 

2.1 Definition Semantics of TML 

Let M = (X, 0, CJ) be a subset-space model. 

l. X® 0 := {(x,U) 1 U E O,x EU} is the set of neigh­
borhood situations ( of the underlying subset frame). 

2. Now validity of a TM L-formula in model M at a neigh­
borhood situation x, U (brackets are omitted) is defined 
by recursion: 

x,U FM T 
x, U FM A : {=:? CJ(x, A) = 1 
x,U FM -,o: : {=:? x,U FM o: 
x, U FM a /\ ß : {=:? x, U FM a and x, U FM ß 
x,U FM Ka : {=:? (\/y E U)y,U FM a 
x, U FM Da : {=:? (\/V C U)(x E V===} x, V FM o:) 

for all A E PV and all formulae a, ß E TM F. 
3. Formula a E TMF holds in M (denoted by FM a:), iff 

it holds in M at every neighborhood situation. 

If there is no ambiguity, we omit index M subsequently. - Examples of 
various subset frames and valid formulas (w.r.t. the usual semantics) 
are given in [DMP] and [Geo 2](e.g.). 

3 The System MPG 

We present, by a list of axioms and rules respectively, a first logical 
system MPG. Our aim is to show that the theorems of this system 
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are exactly the TM L-formulae which hold in every weakly quasi-finite 
model. 

Axioms 

1. All instances of propositional tautologies 

2. (A __, DA)/\(-. A __, D-.A) 

3. I<(a __, ß) __, (J{a __, I<ß) 

4. J<a--,(a/\I<I<a) 

5. La--,J<La 

6. D(a --t ß) --t (Da --t Dß) 

7. D(Da--, a) --, Da 

8. J<Da __, DJ< a 

for all A E PV and all a,ß E TMF. 

Rules 

(1) 
a--tß,a 

(modus ponens) 
ß 

(2) 
a 

( I< -necessitation) 
I<a 

(3) 
a 

( D-necessitation) 
Da 

Some remarks on the axioms seem to be opportune. All but axiom 
(7) appear in the [MP}-list axiomatizing the subset space logic. Two 
schemes of this list are missing here: 

Da __, DDa and Da__, a 

6 



As it is well known, the :first one can be derived from (6) and (7) with 
the aid of rules (1) and (3) (see e.g. [Fri], p. 190); the second scheme 
is canceled without compensation because of the modi:fied semantics. 
(7) is the famous scheme W ( also denoted as G) from ordinary modal 
logic. 
Soundness of the axioms w.r.t. the intended structures can easily be 
established. 

3.1 Proposition 

Axioms (1) - (8) hold in every weakly quasi-finite model. 

As to completeness, we :first construct a subset space validating all 
of the above axioms, but falsifying a formula a which is not deriva­
ble in the system MPG. Fortunately, the complicated construction of 
[DMP], section 2.2, can be adapted for this purpose with only minor 
modi:fications. We only mention the variations here. 

Cleady, the relation " ~ " on the canonical model MMPG of the 
logic (which exists because of the normality of the system w.r.t. each 
modality; see [Goll, §5) is no langer reflexive 6ut only transitive (see 
[DMP], Prop. 2.1(2) ). lt turns out that reflexivity is not really needed. 
Now, in conditions (4), (L 4)(6), and (R 4)(6), "2" has tobe replaced 
by " > ". This has also be clone in the proof of Lemma 2.5 (where 
correspondingly " C " is substituted for " ~ "). The crucial change 
here should be compared with [DMP], Prop. 2.1( 4), and is captured 
by the following Lemma. 

3.2 Lemma 

Lets be an element of the canonical model MMPG of MPG 

7 



such that Oa E s. Then there exists a point t of MMPG 

satisfying 
0 

s----+ t and a /\ 0-ia Et 

Proof: 

One shows that {ß I Dß E s} U { a /\ 0-, a} is consistent. This can be 
achieved by assuming inconsistency towards a contradiction with the 
aid of axiom (7). 
D 

In the ongoing construction, Lemma 3.2 has tobe used instead of the 
above mentioned proposition. We then have the following theorem. 

3.3 Theorem 

Let a E TM F be a formula not derivable in the system 
MPG. Then there exists a subset space X = (X, ox, o-) 
and a point x E X such that 

• all axioms of MPG hold in X, and 

• x,X ~ a. 

To turn the theorem to good account we must have a somewhat closer 
look at the [DMP]-construction. Actually, ox is obtained via an order­
reversing injection i from a certain partially ordered set (P, ~) with 
least element 1- into the set of non-empty subsets of X such that 
i( 1-) = X and { q I q ~ p} is linearly ordered for every p E P. To be 
more precise, (X, P, i) is the limit of a sequence (Xn, Pn, in) such that 
for all n E IN 
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• Pn+l is an ( end) extension of Pn, 

Moreover, to every neighborhood situation y, i(p) an element t(y, p) of 
the canonical model MMPG is associated during the construction, and 
every "existential" formula Oß resp. Lß corresponding to y, i(p) in 
this way is eventually "realized". Finally, for all I E TM F, 1 E t(y, p) 
iff y, i (p) F ,. - After these preliminary remarks we can state the 
announced completeness theorem. 

3.4 Theorem 

A formula a ET M Fis derivable in the system MPG, iff a 

holds in all weakly quasi-finite subset spaces. 

Proof: 

The "only if" -part is an immediate consequence of Proposition 3.1. -
Now let a be not MPG-derivable. Consider the model X and the 
neighborhood situation x, X from Theorem 3.3. 
The model we are looking for has carrier X and X-valuation er (as X 
has). Its set of opens O is constructed inductively in stages with the 
aid of P: 

stage 0: Set P0 := {1-} ~ P. 

stage n + l: For every p E P n, every 
subformula Dß of a, and every y E i(p) such that 
O,ß E t(y,p), choose an element q E P, q > p, 
satisfying ,ß /\ Dß E t(y, q). 
Let P n+l the set of all those q. 

Note that the existence of q is guaranteed through the modified [DMP]-

9 



construction. - Now set P := LJ P n, and let O := i(P). Furthermore, 
nEIN 

let M := (X, 0, o-). 

Then M is weakly quasi-finite. This holds because there is only a finite 
number of subformulas Dß of a, and, if p E Pn and 0--iß E t(y,p), then 
- because of --,ß /\ Dß E t(y, q) - 0--iß cannot be a member of any t(y, r ), 
where r > p is chosen in a step k > n. 

We now prove by induction on the structure of formulae: 

For all ß E TM F and for all neighborhood situations y, U of (X, 0) : 
[ß E sf(a) ==} (y, U FX ß ~ Y, U FM ß)] 

(where sf(a) denotes the set of subformulas of a). 

The cases ß = "T" and ß a propositional variable are clear from the 
definitions of M and " F ". lf ß = "--,,", a = ", /\ 8", or ß = "!{ ,", 

the induction hypothesis directly applies. The implication " ==} " in 
case ß = "D1" follows easily from the induction hypothesis, since O ~ 
ox. In order to prove the reverse direction let y, U be a neighborhood 
situation of (X, 0) such that 

y,U FX Dß. 

(Dß a subformula of a). By construction of M, there is some n E IN 
and some p E Pn C P such that U = i(p). Since 

Y, U FX Dß ==} Y, U FX 0--iß, 

we get 0--iß E t(y,p). But in step n + 1 of the above construction 
a q E P, q > p, was chosen satisfying --iß /\ Dß E t(y, q). Moreover, 
V:= i(q) E 0, and V CU because of q > p. Thus we obtain 

Y, V FX ß. 

By induction hypothesis, 

Y, V FM ß. 

Consequently, 
y,U FM Dß. 
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This ends the induction. 
Since x, X Fx a by Theorem 3.3, the just proved assertion yields 
x, X FM a, as desired. 
0 

4 Decidability 

In this section we show that the set of formulas derivable in the system 
MPG is decidable. Again, we can go along the lines of [DMP] (section 
2.3). We first introduce certain bimodal frames called MPG-frames. 

4.1 Definition 

1. Let :F := (W, R, S) be a bimodal frame (i.e. W is a 
non-empty set and R, S are binary relations on W). 
Then :Fis called MPG-frame, iff 

• R is an equivalence relation on W; 

• S is irreflexive and transitive; 
• (Vs, t, u E W)((s, t) E R /\ (t, u) E S ====;- (3v E 

W)[(s,v) ES/\ (v,u) ER]; 
• every ascending S-chain is finite. 

2. A model M := (W, R, S, ~) based on an MPG-frame 
(W, R, S) is called an MPG-model, iff 

(Vs,t E W)(VA E PV)((s,t) ES====;- [~(A,s) = 1 {=} ~(A,t) = l]. 

lt is not difficult to see that MPG is sound and complete w.r.t. the 
just defined structures. 
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4.2 Proposition 

Every MPG-derivable formula holds in every MPG­
model. Conversely, every a E TM F which is not MPG­
derivable is falsified in some MPG-model at some point. 

Proof: 

Every quasi-finite model M := (X, 0, o-) gives rise to an MPG-model 
M := (W, R, S, ä-) in the following way: 

• W := X 00 

• ((x,U),(y, V)) ER:~ U = V 

• ((x, U), (y, V)) E S: ~ x = y /\ V C U 

• ä-(A, (x, U)) = l: ~ o-(A,x) = l 

An easy induction shows that for all a E TM F the following holds: 

(Vx,U E W)(x,U FM a ~ M p a[x,U]) 

(where on the right-hand side usual (multi-modal) satisfaction (see 
[Goll, §5) is denoted). 
Now the second assertion follows with the aid of Theorem 3.4. The 
first one is obvious. 
D 

Next we will show that every formula which holds in the canonical 
model MMPG at some point is also satisfied in a finite MPG-model. 
Let a E TM F satisfy 

MMPG F a[s] 

for some point s of MMPG· 

Let r be the set of all subformulae of a joined with the set of all negated 
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subformulae of a, r := r U {ß I ß is a finite conjunction of distinct 
elements of r}, and 6. := f'u {Lß I ß E f}. We then have the following 
filtration-lemma. (The reader not familiar with with filtrations should 
consult [Goll, §§4,5.) 

4.3 Lemma 

Let M := (W, R, S, c,) be a 6.-filtration of MMPG such 
that R and S are the minimal filtrations of the respecti­
ve accessibility-relations in MMPG· Then M satisfies all 
MPG-model properties up to - possibly - irreflexivity. 

Proof: 
The proof is not simple. We need not present it here because its simi­
larity with the [DMP]-proof. Especially, the semantic argument used 
to prove transitivity of S is applicable in our case, too. That is to say, 
we argue with completeness of the considered systems w.r.t. MPG­
models stated in Proposition 4.2. (To be more precise, one profits by 
the fact that every consistent set of formulas containing all axioms 
holds in some MPG-model; note that J E9t. I< - occuring in the proof 
of [DMP], Lemma 2.10 - is indeed an MPG-frame.) 
D 

As M := (W, R, S, c,) is a filtration of MMPG, W is finite (~W ::; 
2~t,.) and consists of certain equivalence classes s of points s from the 
canonical model. Moreover, for all ß E ß and every s we have 

MMPG I= ß[s] ~ M I= ß[s]. 

Thus a is satisfied in the finite model M. Unfortunately, M is not 
of the type we are looking for. But self-referential connections may 
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simply be "forgotten". 

4.4 Lemma 

Let M be as above. Let M' := (W, R, S', a), where S' = 

S \ Diag(W). Then 

(Vß E Ll)(Vv E W)(M p= ß[v] {=} M' p= ß[v]). 

Proof: 

The induction is trivial except for the " <== "-direction in the ß = D1-
case. So let v E W such that M F D1 [v]. Then v is the dass of some 
point s of the canonical model, and we have MMPG F o,[s]. Because 
of axiom (7) we have 

Hence there exists a point t of MMPG , which is a " ~ " - successor 
of s, such that 

MMPG F (D, (\-, ,)[t]. 

Let u be the equivalence dass oft. Then 

M p= (D1 /\ -,,)[u] and (v,u) ES. 

Since M p= o,[u] we have u =I= v, and since M p= -,,[u] we obtain 
M' p= -,,[u] by induction hypothesis. Consequently, M' F o,[v]. 
D 

Combining the results of this section we get the following theorem. 
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4.5 Theorem 

The set T := { a E TM F I a holds in every weakly quasi­
finite model} is decidable. 

Proof: 

Let a E TM F be given. Form ~ dependent on -, a and let n := 2tiß. 
Check for all MPG-models M := (W, R, S, O") such that ~W ~ n 
whether M l= -, a[v] for some v E W. lf th.is is not the case, a is in T; 
otherwise not. 

Correctness of this algorithm is proved as follows: if a E T, a clearly 
holds in every model considered above. Otherwise a is not MPG­
derivable by Theorem 3.4, hence falsified in MMPG at some point. 
Lemmata 4.3 and 4.4 yield that there exists a falsifying MPG-model 
of cardinality ~ n. 
D 

5 Concerning The FMP 

In this final section we show first by giving a counterexample that 
the logic of weakly quasi-finite spaces does not have the finite model 
property (FMP). 

5.1 Theorem 

The logic of weakly quasi-finite spaces is lacking the FMP. 
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Proof: 

Let X:= IN. For i EIN let U; :=IN\ {O, ... , i}, and define O := {U; / 
i EIN}. Then (X,O) is a weakly quasi-finite subset frame. Define an 
X-valuation <7 by 

<7(A,j) := 1 

for all A E PV and j E IN. Then the following formula holds m 
M := (X, 0, <7): 

LAA K(A--+ LOA) A KD(A--+ LOA), where A E PV. 

Clearly, this formula ( call it a) cannot hold at any neighborhood si­
tuation of some finite subset frame. lt follows that -, a holds in every 
finite subset space. This implies (together with FM a) the lack of the 
FMP. 
D 

So far we have mainly dealt with weakly quasi-finite spaces. But some 
of the previously applied methods are also useful for studying the logic 
of quasi-finite spaces. Here is its axiomatization: Replace scheme (7) 
of the above list ( see section 3) by 

(9) D(J{Da--+ a) --+ Da ( a E TM F). 

The reader will notice that (9) is stronger then (7). - Let QFS be the 
resulting logical system. We then have the following theorem. 

5.2 Theorem 

QFS gives a sound and complete axiomatization of the dass 
of quasi-finite spaces. 

16 



Proof: 

As to soundness, only (9) has yet tobe considered. Validity in all quasi­
finite models is easily established. - Completeness is proved analogously 
to that of MPG: See the proof of 3.4. But now (9) in its equivalent 
form 

0, o: - O(J{Do: /\-, o:) 

has to be applied instead of (7). Clearly, the construction procedure 
then stops after a finite number of stages. Hence the resulting model 
is quasi-finite. 
D 

Note that the model falsifying a non QFS-derivable o: is not only 
quasi-finite, but satisfies the stronger requirement that every C -chain 
in O is of bounded length ( dependent on o:). - Contrary to MPG, the 
system QFS satisfies the FMP. 

5.3 Theorem 

Every formula o: not QFS-derivable is falsified in a finite 
subset space M = (X, 0, a-). Moreover, the cardinality of 
X depends on the size of o:. 

Before proving the theorem, let us state an immediate corollary. 

5.4 Corollary 

The set 'I' := { o: E TM F I o: holds in every quasi-finite 
model} is decidable. 

17 



This result could also have been obtained using the methods of section 
4. Indeed, if one changes Definition 4.1(1) in that every S-chain is 
finite (resulting in the notion of a QFS-frnme), one can take over the 
argumentation from there. But, clearly, the FMP is a stronger attribute 
of the system. 

Proof of Theorem 5.3: 

Let o: E TM F be not QFS-derivable. By ( the proof of) theorem 5.2, 
there exists a quasi-finite model M = (X, 0, o-) and a point x E X 
such that x, X ~ o:. We shall now associate with M a so-called tree­
like model ( see [ Geo 2]) falsifying o: as well. 

5.5 Definition 

A subset space M' = (X', 0', o-') is called a tree-like model, 
iff for all U, V E 0' 

U ~ V or ·V ~ U or U n V = 0. 

In [Geo 2] it was proved that every TMF-formula ß which is satisfia­
ble in some tree-like model is also satisfiable in some finite tree-like 
model (Theorem 31), w here the number of points is a function of the 
complexity of o:. 
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5.6 Lemma 

Let M = (X, 0, a) be as above. Then there exists a tree­
like model M' = (X', O', a') and a surjection <p : X' --+ X 
which induces an inclusion-preserving bijection from 0' onto 
0 such that 

(VßETMF)(y,U1pM,ß ~ <p(y),cp(U)p:-Mß 

for all neighborhood situations y, U of (X', O'). 

Proof: 

Let Y := {(y;y,U) 1 y EX; y,U EX® O}. We shall construct the 
desired model in a finite number of steps such that X' ~ Y. 

stage 0: Let 10 be the set of minimal opens of 0. 
Let V':= {(y;y, V) 1 y, V EX® 0}, 
and define 0~ := {V' 1 V E Ia}. 

stage n + 1: Let On be already constructed. Let In+l be the set of 
minimal opens of O not yet processed. For every U E In+i 
let U' := U V'U {(y;y,U) ! y,U EX® O;y (/-. LJ V}, 

vcu vcu 
and define On+1 := {U' \ U E ln+d-

Since every C-chain in M is of bounded length (see the remark after 
5.2), the procedure is finally finished; say after stage k. Now let 

O' := LJ On, and X':= LJO'. 
n=O, ... ,k 

lt remains to define a'. But its definition is canonical: 

a'(A,(y;y,U)) := a(y) 

for all A E PV and all (y;y,U) EX'. Now, as one can see inductively, 
M' = (X', 0', a') is a tree-like model. 

The mapping <p is likewise defined in a natural manner: 

cp(y; y, U) := y for all y, U EX® 0. 

19 



Note that r.p is indeed surjective, since XE 0. Clearly, r.p(U') = U and 
V ~ U iff V' ~ U' for all U, V E O. 
So far we have defined M' and r.p. The final assertion of the lemma is 
then proved by a simple induction on the structure of ß which is not 
carried out here. 
D (5.6) 

Thus our original a is falsified in a tree-like model. Unfortunately we 
cannot use Georgatos' above mentioned result now, since we changed 
the semantics. 

Instead of it we proceed follows (see the proof of 3.4 and 5.2 resp.): 
Let M = (X, 0, o-) be the tree-like model falsifying a, which was 
constructed in lemma 5.6 in dependence on the corresponding model 
from the proof of 5.2. Then, according to the "distance" of an open V 
from X w.r.t. proper reverse inclusion, a partition of O is induced: 

0= LJ O; 
i=O, ... ,k 

for a certain k E IN, such that for all x E X there is at most one 
v; E O; satisfying x E v; ( 0 0 = {X}); if V E O;, we call i the level of 
V. 

Now define inductively finite sets Oi of opens as follows: 

i = 0 O; : = {X}. 

i = n + 1: Let V E on and Dß E sf(a) Choose some x EX 
satisfying x, V I= 0-. ß ( if such an x exists), 
and let vn+I ·= vn+I x,D~ß · x · 

Define on+I ·= {vn+I I Dß E sf(a) vn exists . · x,Dß , x , 

and X, Vxn F 0-. ß for some X} 

(Note that x, Vx~6J I= --, ß /\ I<Dß and that On ~ On for every O ~ n ~ 
k.) 
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Let 
0:= LJ O'. 

i=O, ... ,k 

Then O is finite. For each U E O let 

U := U\ LJ V, 
VcU,VEÖ 

and define the following equivalence relation on the set of neighborhood 
situations x, V satisfying x E U and V C U: 

x, V r..Ju Y, W: ~ (\:/J(ß E sf(a))[x, V F J(ß ~ Y, W F J(ß]. 

Clearly, there is only a finite number of equivalence classes, which we 
denote by [x, V]u and collect as a set U. 
Let an equivalence dass [x, V]u EU be given. Then let 

< x, V >u:= {V 1 (:3y) y, V E [x, V]u }. 

We now define inductively a partition Uj of Uj := {V E O I V C 
U} n O;+J for all 1 ::; j such that i + j ::; k, where i is the level of U. 

j = 1: Let U1 := { < x, V >u n U1 1 [x, V]u EU}. 

j = n + l: Let Un be already defined. Take any element 
V E Un. Consider the intersection 

UV n UUn+1-
If this intersection is properly contained in UV, 
let V':= { < x, V >u n Un+1 1 V E V}. 
Otherwise choose a non-trivial partition V1 , V2 of V, and let 

V{ := { < x, V >u n Un+1 1 V E Vi} and 
V~ := { < x, V >u n Un+1 1 V E V2}-

Subsume all those V' and V{, V~ resp. under the set Un+l · 
(Note that a non-trivial partition V1 , V2 exists whenever the 
the above considered intersection does not fulfil 
the proper-containment-condition.) 

Now define 8 := 0 U {UV IV E Uj for some 1::; j::; k - i}. 

Clearly, 8 is finite as well. Define a ( surjective) function r.p : 0 ---+ 0 
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by 

<p(V) ,~ { ~( < x, V >u n u,J 
if V E 0 
if U is the minimal element of O containing V, 
and l is the level of V. 

With these notations we have the following lemma. 

5.7 Lemma 

Let M be the above, and M ·- {X, 0, o- }. Then for all 
subformulas ß of a, all x EX and every V E O the following 
holds: 

x, V FM ß ~ x, tp(V) l==M ß. 

Proof: 

The sentential-logical cases are evident. 

ß = D,: 
The direction " ==;> " is clear by the induction hypothesis because of 
the surjectivity of 'P· As to the other direction, let x, V FM 0 1 . Then 
there exists a V' C V such that x, V FM „ By induction hypothesis, 
x, 'P( V) FM 1 . As our above construction respects the levels of opens 
and leads in any case to proper containment, x, tp(V) FM 0 1 . 

ß = ]{,: 
In this case the assertion follows because rvu was defined adequately, 
and the sets U j of partitions respect the equivalence classes. 
D (5.7) 
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No further difliculties arise in the course of the proof of Theorem 5.3 
along Georgatos' outline ([Geo 2], Lemma 30 ff.). 
D (5.3) 

6 Conclusions 

We changed slightly the semantics of topological modal logic introdu­
ced by Moss and Parikh ([MP]): we considered strict inclusion instead 
of ordinary inclusion in modelling the box-operator. As a first appli­
cation we treated the logics of (weakly)-quasi-finite spaces. We proved 
completeness of the proposed logical systems, and showed decidability 
of their respective set of theorems. Moreover, the finite model proper­
ty does not hold for the logic of weakly quasi-finite spaces, whereas it 
holds if one restricts interpretation to quasi-finite spaces. 
lt seems to be interesting to study further logics based on the here pre­
sented modified semantics, especially in a computational context where 
one is confronted with approximations of objects rather than objects 
themselves. 
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