Patrick Eitschberger

Energy-efficient and Fault-tolerant
Scheduling for Manycores and Grids

Mathematik
und
Informatik

Dissertation

deposit_hagen

Publikationsserver der @ FernUniversitat in Hagen

Universitatsbibliothek

©

FernUniversitat in Hagen
Fakultat fiir Mathematik und Informatik
Lehrgebiet Parallelitat und VLSI

Energy-efficient and Fault-tolerant
Scheduling for Manycores and Grids

Dissertation
zur Erlangung des akademischen Grades
DOKTOR DER NATURWISSENSCHAFTEN
(Dr. rer. nat.)

von
Dipl. Inform. Patrick Eitschberger, M. Comp. Sc.
Dorsten

Hagen, 2017

Promotionskommission:

Erster Gutachter: Herr Prof. Dr. Jorg Keller
(FernUniversitét in Hagen, Germany)
Zweiter Gutachter: Herr Prof. Dr. Christoph Kessler

(Linképing University, Sweden)
Vorsitzender der Promotionskommission: Herr Prof. Dr. Friedrich Steimann
Promovierte Mitarbeiterin: Frau Dr. Daniela Keller

Tag der Disputation:
05. Oktober 2017

IT

For my wife Katrin and
my children Milian and Jannis

I1I

Abstract

Parallel platforms like manycores and grids consist of a large number of processing
units (PUs) to achieve high computing power. To enable a fast execution of complex
applications, they must be decomposed into several tasks and scheduled efficiently
onto the parallel platform.

The reliability of these platforms is crucial in order to avoid high costs in sense
of money, time or life-critical situations. A failure of a PU can be tolerated by task
duplication, where each task is duplicated onto another PU. In case of a failure,
the schedule execution can be continued by running the duplicates instead of the
faulty original tasks. But integrating duplicates into a schedule often results in
performance overhead already in the fault-free case.

Additionally, a low energy consumption for a schedule is desired to reduce costs
and to protect the environment. Dynamic voltage and frequency scaling (DVFS)
is one approach to reduce the energy consumption. However, scaling the frequen-
cies and voltages of PUs to an efficient level often leads to performance overhead,
because tasks are usually slowed down. In addition, including duplicates into a
schedule increases the energy consumption because they are typically executed be-
side the original tasks. This leads to a three-dimensional optimization problem of
performance, fault tolerance and energy consumption.

In this thesis the interplay between these three objectives is explored. Several
new fault-tolerant and energy-efficient heuristics and strategies are presented that
offer a user the opportunity to set various preferences. Additionally, a prototype
runtime system is presented that tolerates a failure and also uses DVFS to improve
the energy consumption. Finally, the different strategies are evaluated with various
test sets in general but also with real-world applications on real parallel platforms.

IV

Zusammenfassung

Parallele Systeme, wie beispielsweise Manycores und Grids, bestehen aus einer
grofen Anzahl an Verarbeitungseinheiten (PUs), um eine hohe Rechenleistung zu
erzielen. Um eine schnelle Abarbeitung komplexer Applikationen zu ermoglichen,
miissen diese in mehrere Tasks zerlegt und effizient auf die parallele Plattform einge-
plant werden.

Die Zuverlassigkeit dieser Plattformen ist entscheidend, um hohe Kosten im Sinne
von Geld, Zeit oder lebensbedrohlichen Situationen zu vermeiden. Ein Ausfall einer
PU kann durch Task-Duplikation toleriert werden, bei der jede Task auf einer an-
deren PU dupliziert wird. Im Falle eines Ausfalls kann die Schedule-Verarbeitung
fortgesetzt werden, indem die Duplikate anstelle der ausgefallenen Original-Tasks
ausgefiihrt werden. Allerdings fithrt das Einfiigen von Duplikaten in einen Schedule
bereits im fehlerfreien Fall haufig zu einem Leistungsverlust.

Zusétzlich wird ein niedriger Energieverbrauch fiir einen Schedule angestrebt, um
Kosten zu reduzieren und die Umwelt zu schonen. Dynamische Spannungs- und
Frequenzskalierung (DVFS) ist eine Moglichkeit, um den Energieverbrauch zu re-
duzieren. Jedoch fiihrt die Skalierung der Frequenzen und Spannungen von PUs
haufig zu einem Leistungsverlust, da Tasks fiir gewohnlich verlangsamt werden.
Aufserdem erhoht das Einfiigen von Duplikaten in den Schedule den Energiever-
brauch, da sie in der Regel neben den Original-Tasks ausgefiithrt werden. Dies fiihrt
zu einem drei-dimmensionalen Optimierungsproblem zwischen Leistung, Fehlertol-
eranz und Energieverbrauch.

In dieser Arbeit wird das Zusammenspiel zwischen diesen drei Zielen erforscht.
Mehrere neue fehlertolerante und energieeffiziente Heuristiken und Strategien wer-
den présentiert, die einem Benutzer die Moglichkeit bieten unterschiedliche Préferen-
zen einzustellen. Dariiber hinaus wird ein prototypisches Laufzeitsystem vorgestellt,
das einen Fehler toleriert und DVFS benutzt, um den Energieverbrauch zu verbessern.
Zum Abschluss werden die unterschiedlichen Strategien mit verschiedenen Testmen-
gen im Allgemeinen aber auch mit realen Anwendungen auf realen parallelen Platt-
formen evaluiert.

Acknowledgement

I would like to thank in particular Prof. Dr. Jorg Keller for his great supervision and
the countless fruitful discussions, helpful hints and his untiring patience (especially
in the final phase of my Ph.D.) during my time as a research assistant and Ph.D.-
student in his research group.

Many thanks to Prof. Dr. Christoph Kessler for interesting discussions, ideas and
insights in related topics, which have positively influenced the development of this
thesis. Thanks for agreeing to be the second reviewer of this thesis.

I am grateful for the detailed discussions with Dr. Simon Holmbacka related to
several parts of this thesis, like power modeling of real systems, trade-off analysis
and estimation of lower/upper bounds. This helped me to find new ideas and to
improve the quality of this thesis. Thanks for also proof-reading most of the parts
of this thesis.

I like to thank Prof. Dr. Wolfram Schiffmann and Dr. Jérg Lenhardt for the dis-
cussions and feedbacks about energy modeling. Special thanks to Dr. Jorg Lenhardt
for his feedback to several questions related to IXTEX and for proof-reading this the-
sis.

I especially would like to thank my lovely family for the support and motivation
during my Ph.D.-study. Special thanks to my wife Katrin, who gave me the neces-
sary freedom to write down this thesis and who always listened to me, when I had
problems. Warm thanks to my children Milian and Jannis, who brought a smile to
my face whenever I was stressed or unmotivated.

Thanks to all not explicitly mentioned persons, who supported me during this
time.

Patrick Eitschberger
Hagen
June 5, 2017

VI

Publications and Previous Work

Parts of the work described in this thesis have been published in the following
articles. After a short description of the content, the contribution of the authors
is described for each publication. All parts in this thesis that are related to these
articles are explicitly cited. The sections that cover the work in the articles are given
for each article.

Patrick Cichowski, Jorg Keller, Christoph Kessler: Modelling Power Consumption
of the Intel SCC. 6th Many-core Applications Research Community Symposium
(MARC ’12), Toulouse, France, Jul. 2012, pp. 46-51 [45] (covered in Sect. 6.3.2).

In this article, a power model for the Intel SCC (Single-chip Cloud Computer)
is presented. Based on the results of several micro-benchmarks and workload
distributions over all cores the tuning parameters for the proposed power model
are determined by a least squares analysis.

This publication was written by Patrick Cichowski, Jorg Keller and Christoph
Kessler. Jorg Keller suggested the power model and the micro-benchmarks for
the Intel SCC. Christoph Kessler contributed several details about the Intel
SCC and related work. Patrick Eitschberger implemented and evaluated the
micro-benchmarks and gave further information of the SCC.

Patrick Eitschberger, Jorg Keller: Efficient and Fault-tolerant Static Scheduling for
Grids. 14th IEEE International Workshop on Parallel and Distributed Scientific
and Engineering Computing (PDSEC ’13), Boston, Massachusetts, May 2013, pp.
1439-1448 [53| (covered in Sects. 2.4.3, 4.2.1 and 4.2.3).

In this article, a fault-tolerant duplication-based scheduler is presented that
guarantees no overhead in a fault-free case. Based on the approach of Fechner
et al. [59] where no communication time is considered, the influence of the com-
munication time between tasks onto the placement of duplicates is discussed
and different strategies are presented. Additionally, in this paper another kind
of fault is introduced where tasks can be slowed down because of a high usage
rate of a processor. In this case, the already placed duplicates can be used to
speedup the execution.

This publication was written by Patrick Eitschberger as most of the results
were based on his German diploma thesis. Jorg Keller proof-read the paper
and checked the writing style. He furthermore contributed the idea of using
the duplicates for slowed down tasks. Patrick Eitschberger implemented and
evaluated this extension.

VII

Patrick Eitschberger, Jorg Keller: Energy-efficient and Fault-tolerant Task Graph
Scheduling for Manycores and Grids. 1st Workshop on Runtime and Operating
Systems for the Many-core Era (ROME ’13), Aachen, Germany, Aug 2013, pp.
769-778 [54] (covered in Sects. 4.3.1 and 4.3.4).

In this article, as an extension, frequency scaling is included into the previous
approach [53] to either improve energy consumption in the fault-free and fault
case or the performance overhead in case of a failure. The frequency for tasks is
scaled down without prolonging the makespan of the original schedule. In case
of a failure tasks can also be speeded up to reduce the performance overhead.

This publication was written by Patrick Eitschberger. He also contributed
the main idea of integrating energy efficiency aspects, i.e. frequency scaling
into the fault-tolerant scheduler and the corresponding heuristic. Jorg Keller
contributed details for a generalized power model and suggested to also use
frequency scaling for speeding up tasks in case of a failure. The implementation
and evaluation was done by Patrick Eitschberger.

Christoph Kessler, Nicolas Melot, Patrick Eitschberger, Jorg Keller: Crown Schedul-
ing: Energy-Efficient Resource Allocation, Mapping and Discrete Frequency Scaling
for Collections of Mallable Streaming Tasks. 23rd International Workshop on Power
and Timing Modeling, Optimization and Simulation (PATMOS ’13), Sept 2013, pp.
215-222 [104] (used as related work in Sect. 2.5.3).

In this article, an energy-efficient optimization approach, called crown schedul-
ing, for malleable streaming tasks is presented. Crown scheduling is based on
integer linear programming (ILP) and combines next to a separate consider-
ation the resource allocation, mapping and discrete voltage/frequency scaling
under a given throughput constraint.

This publication was written by Christoph Kessler and Jorg Keller. Christoph
Kessler contributed an ILP model for the separate and combined crown schedul-
ing. Patrick Eitschberger developed a task set generator for the experimental
section and participated in combining the software for the separate phases.
Nicolas Melot implemented and combined the separate phases of crown schedul-
ing. He also adapted details of the ILPs and evaluated crown scheduling.

Nicolas Melot, Christoph Kessler, Jorg Keller, Patrick Eitschberger: Fast Crown
Scheduling Heuristics for Energy-Efficient Mapping and Scaling of Moldable Stream-
ing Tasks on Manycore Systems. ACM Transactions on Architecture and Code Op-
timization (TACO ’15), vol. 11, no 4, pp. 62:1-62:24, Jan. 2015 [126] (used as
related work in Sect. 2.5.3).

VIII

In this article, the previous approach [104] is extended by several phase-separated
and integrated heuristics for Crown Scheduling. The longest Task, lowest Group
(LTLG) heuristic is introduced to balance the load for mapping parallel tasks.
A Height heuristic is presented for frequency scaling. The allocation is opti-
mized by heuristics based on binary search and simulated annealing.

This publication was written by Nicolas Melot. He designed the optimal alloca-
tion and the phase-separated and integrated heuristics for Crown Scheduling.
Christoph Kessler contributed the concrete task set in the extended experimen-
tal section. Christoph Kessler, Patrick Eitschberger and Jorg Keller proof-read
the paper and checked the writing style.

Patrick Eitschberger, Jorg Keller: FEnergy-efficient Task Scheduling in Manycore
Processors with Frequency Scaling Overhead. 23rd Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing (PDP ’15), Turku,
Finland, March 2015, pp. 541-548 [55] (covered in Sect. 2.5).

This article focuses on evaluating the overhead in time and energy that is spent
for frequency scaling. Especially for small time scales the frequency scaling
overhead can have a significant influence on the runtime and energy of a sched-
ule. With the help of a bin packing heuristic the frequency scaling overhead is
considered and optimized schedules are created.

This publication was written by Patrick Eitschberger and Joérg Keller. Jorg
Keller contributed the idea to use bin packing and participated in interpreting
the results. Patrick Eitschberger contributed to the cost function for the bin
packing. He also implemented and evaluated the bin packing heuristic.

Patrick Eitschberger, Jorg Keller: Fault-tolerant Parallel Execution of Workflows
with Deadlines. 25th Furomicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP ’17), St. Petersburg, Russia, March 2017, pp.
541-548 [56] (covered in Sects. 4.3.6, 4.3.7, 4.3.8 and 4.5).

In this article, the previous work in [53| and [54] is extended by several ap-
proaches to improve the energy consumption in case of a failure. Next to
various heuristics also ILPs for optimal solutions are presented.

This publication was written by Patrick Eitschberger and Jorg Keller. Jorg
Keller contributed the idea and implementation of the CP-heuristic (Con-
stant Power). Patrick Eitschberger contributed the idea and implementation
of the LFR-heuristic (Lazy Frequency Re-scaling). He also integrated both ap-
proaches into the already existing scheduler from the previous work and did the
evaluation. The main idea for the ILPs to optimize the energy consumption

IX

for a schedule was given by Christoph Kessler for the publication about Crown
Scheduling above [104]. Jorg Keller and Patrick Eitschberger adapted this idea
for energy-efficient and fault-tolerant schedules.

The author of this Ph.D.-thesis already wrote his German diploma thesis in the
context of fault-tolerant scheduling [44| where the primary version of the scheduler
was implemented that is used, partly re-implemented and significantly extended in
this Ph.D.-thesis. All parts of this Ph.D.-thesis that are related to this previous
work are strictly separated from the contributions and marked as previous work.
The organization in Chap. 2 (Background) is in Sects. 2.3 (Scheduling) and 2.4
(Fault Tolerance) partially based on the presentation in the German diploma thesis.
In Tab. 0.1 the mentioned previous work is summarized in the context of this Ph.D.-
thesis to provide the reader a clear distinction.

Table 0.1: Summary of Previous Work Done for the German Diploma Thesis in
Comparison to the Work Done for the Ph.D.-thesis.

Topic German Diploma | Ph.D-thesis
thesis
Scheduling v v (Chap. 2; additional
rubrics in the classification
and related work)

Fault Tolerance v v/ (Chap. 2; additional re-
lated work and fault tol-
erance in MPI (Message
Passing Interface))

Fault-tolerant Scheduling Heuristics v v (Chap. 4; additional

heuristic and fault type)

Strategies

v (fault-tolerant)

v (Chap. 4; additional
fault-tolerant and energy-
efficient strategies)

Detailed Description of - v/ (Chap. 2)
Parallel Platforms
Designing Parallel Applications - v'(Chap. 2)
Explanations and Definitions in - v (Chap. 2)
the Context of Energy Efficiency
Trade-off Description - v (Chap. 3)
Estimation of Upper/Lower Bounds - v (Chap. 3)
Energy-efficient Heuristics - v'(Chap. 4)
Energy Optimization with ILPs - v'(Chap. 4)
Runtime System - v (Chap. 5)
Power Modeling - v (Chap. 5)
Real-world Scenarios - v (Chap. 6)

Contents

List of Tables

List of Figures

Listings

List of Abbreviations

1 Introduction

2 Background

2.1 Parallel Platforms

2.2

2.3

2.4

2.5

21,1 Types
2.1.2 Classifications
Parallel Applications
221 Design oo
222 Models
2.2.3 Implementation
Scheduling
2.3.1 Classification
2.3.2 Performance and Cost Metrics
Fault Tolerance
2.4.1 Classification of Faults
2.4.2 Failure Models
2.4.3 Fault-tolerant Scheduling
2.4.4 Fault Tolerance in MPI
Energy Efficiency
2.5.1 Energy Consumption
2.5.2 Modeling
2.5.3 Energy-efficient Scheduling
2.5.4 From the Model to the Real World

2.5.5 Measuring Power Consumption

XI

XIV

XVII

XVII

XVIII

3 Trade-off between Performance, Fault Tolerance and Energy Con-

sumption 45
3.1 Two-dimensional Optimization 45
3.1.1 Performance vs. Fault Tolerance 45
3.1.2 Performance vs. Energy Consumption 48
3.1.3 Fault Tolerance vs. Energy Consumption 50
3.2 Fault-free Case vs. Fault Case 53
3.3 Three-dimensional Optimization: Performance vs. Fault Tolerance
vs. Energy Consumptiono 53
3.4 Estimation of Upper/Lower Bounds 55
3.4.1 Performanceo 55
3.4.2 Fault Tolerance 55
3.4.3 Energy Consumption 56
4 Fault-tolerant and Energy-efficient Scheduling 59
4.1 Assumptions 59
4.2 Fault-tolerant Scheduling Heuristics 60
4.2.1 Previous Work oo 60
4.2.2 Use Half PUs for Originals (UHPO) 66
4.2.3 Excursion: Use Duplicates for Delayed Tasks 68
4.3 Energy-efficient Scheduling Heuristics and Options 70
4.3.1 Buffer for Energy Reduction (BER) 70
4.3.2 Option: Insert Order (SDE vs. SED) 74
4.3.3 Change Base Frequency (CBF) 75
4.3.4 Energy for Performance (EP) 76
4.3.5 Option: Delete Unnecessary Duplicates (DUD) 78
4.3.6 Lazy Frequency Re-scaling (LFR) 78
4.3.7 Constant Power (CP) 81
4.3.8 Option: Maximum Makspan Increase (MMI) 85
4.4 User Preferences and Corresponding Strategies 85
4.4.1 Valid Combinations 86
4.4.2 Strategies Fault-free Case 88
4.4.3 Strategies Fault Case 90
4.5 Energy-optimal Solutions and Approximations 91
4.5.1 Fault-free Case 91
452 Fault Case 93
5 A Fault-tolerant and Energy-efficient Runtime System 97
5.1 System Check Tool 98
5.2 Runtime System L 99
5.3 Power Model 103

XII

6 Experiments
6.1 Test Environment . . .
6.1.1 Test Sets
6.1.2 Test Systems .

6.2 Experiments with a Generalized Power Model
6.2.1 Strategies S1 & S2
6.2.2 Strategies S3& S4

6.2.3 Strategy S5 . .
6.2.4 Strategy S6 . .

6.2.5 Comparison of Strategies for the Fault-free Case

6.2.6 Strategy S7 . .

6.2.7 Strategies S8 & S9
6.3 Experiments on Real World Platforms
6.3.1 Intel i7 3630qm, Intel i5 4570 and Intel i5 E1620

6.3.2 Intel SCC . ..

6.4 Analysis of the Scheduling Time

6.5 Summary & Discussion
7 Conclusions
8 Outlook

Bibliography

XIII

105
105
105
107
108
109
111
116
117
118
119
120
126
126
136
137
138

141

143

List of Tables

0.1

2.1

4.1
4.2
4.3

5.1
0.2

6.1
6.2

6.3

6.4

6.5

6.6
6.7

Summary of Previous Work Done for the German Diploma Thesis in

Comparison to the Work Done for the Ph.D.-thesis. X
RAPL Domains and Corresponding Processor Components. 43
Overhead in the Fault-free Case [53]. 65
Overhead in the Fault Case [53]. 65
Improvement of Makespan with the Use of Duplicate in Case of 50 %,

70 % and 80 % Slowdown [53]. o 70
Settings for a Processor with Four Cores and F' Frequency Levels. . . 98
Different Benchmark Settings. 99

Different Approaches to Integrate Frequency Scaling into Scheduling. 113
Values of the Architecture Specific Tuning Parameters for the Bench-

marks (i5 E1620).o 127
Values of the Architecture Specific Tuning Parameters for a Mixed

Workload. 127
Difference Between the Data and the Model as Error Values Squared

from Figure 6.19.o 128
Differences Between Measured Data and Predictions for all Schedules. 132
Scheduling Time. 137
User Preferences and Favored Strategies. 139

XIV

List of Figures

2.1
2.2
2.3
24
2.5
2.6

2.7
3.1

3.2

3.3

Flynn’s Classification of Computer Systems [139]. 9
Tanenbaum Classification of Parallel Platforms [171]. 10
Process of Developing a Parallel Application [164]. 12
Taxonomy of Scheduling Algorithms [84]. 17
Leackage Currents in a Transistor [154]. 36
Task Runtime with a Modeled Continuous Frequency (Top) and with

Discrete Frequencies (Bottom). 38
Energy Consumption for Continuous and Discrete Frequencies. 38
Fault-tolerant Schedule: a) Using Free PUs for the Placement of Du-

plicates, b) No Free PUs are Available. 46
Example Schedule: a) Running at a High Frequency (e.g. 2 GHz),
b) Reducing Energy Consumption by Scaling Down the Frequencies
(eg.to 1 GHz). 49
Fault-tolerant Schedule: a) Using Dummies and Duplicates to In-
crease the Fault Tolerance, b) Only Using Dummies to Get a Better
Energy Consumption. 51

3.4 Placement of Duplicates: a) Running at a High Frequency (e.g. 2
GHz), b) Reducing Energy Consumption by Scaling Down the Fre-
quencies (e.g. to 1 GHz). 52

4.1 Abort Duplicate After Finishing Original Task [59]. 61

4.2 a) Simplified Taskgraph, b) Strategy 1: Use Only DDs, c) Strategy
2: Use Dsand DDs [B9]. o 62

4.3 Influence of Communication Times [53].. 62

4.4 a) Extended Task Graph, b) Schedule without and ¢) with Commu-
nication Time [53]. 63

4.5 a) Example Taskgraph, b) DD Placement Old Version, ¢) DD Place-
ment New Version [53]. oo 64

4.6 Example Schedule to Illustrate the Changes by the UHPO-option. . . 67

4.7 Cases of Placed Duplicates Compared with a Slowed Original Task [53]. 69

4.8 Example Schedule to Illustrate the Frequency Scaling Heuristic [54]. . 71

4.9 Example Schedule to [llustrate the Changes by the Insert Order [54]. 74

4.10 Example Schedule with a Low Base Frequency. 75

4.11 Schedule in Case of a Failure with EP-option. 7

4.12 Example Schedule to Illustrate the Changes by the LFR-heuristic. . . 79

XV

4.13

4.14

4.15

4.16
4.17

5.1
0.2

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

6.24

6.25

Extended Example Schedule to Illustrate the Changes by the LFR-

heuristic. 80
Extended Example Schedule to Ilustrate the Changes by the CP-

heuristic. Lo 82
Heuristics/Options and their Relationship to the Fault-free and Fault

Case. 86
Alignment of Different Strategies for the Fault-free Case. 88
Alignment of Different Strategies for the Fault Case. 90
Overview of RUPS. 97
Overview of the Runtime System. 100
General Organization of the Benchmark Suite [44][84].. 106
Taskgraphs of Real Applications, Robot Control (left) and Sparse

Matrix Solver (right) [100]. oL 107
Structure of the Intel SCC [92]. 108
Overheads of Strategies S1 & S2. 110
Overheads of Strategies S1 & S2 without Using Free PUs.. 111
Overheads of Strategies S3 & S4. 112
Energy Improvements for Different Test Sets. 113
Energy Improvement in a Fault-free Case (Optimal vs. Non-optimal). 115
Overheads of Strategy S5. L. 116
Overheads of Strategy S5 for a Different Number of PUs. 117
Overheads of Strategy S6. 118
Overheads of Different Strategies. 118
Performance Overheads in the Fault Case. 119
Distribution of Relative Energy Increase for Different Values of Dead-

line Increase. 121
Density and Probability of GEV Distribution for Optimal Solutions. . 123
Density and Probability of GEV Distribution for Strategy S8. 124
Density and Probability of GEV Distribution for Strategy S9. 125
Number of Feasible Solutions for Different Values of Deadline Increase.126
Power Consumption and Power Model for Different Platforms. 128
Power Consumption for an Example Schedule Using Different Fre-

quencies (Desktop Machine). oL 129
Power Consumption for an Example Schedule Using Different Fre-

quencies (Server Machine). oo Lo 130
Comparison Between Predicted and Measured Energy Consumption

(for Mixed Workloads). 131
Energy Behavior for a Workload at Different Frequencies and Number

of Cores. 133

Results when Scheduling According to Scenarios A,B,C,D Showing:
Relative Energy Consumption (Lower is Better), Performance (Higher
is Better), Performance Overhead when Fault (Lower is Better). . . . 135
Energy Improvement in a Fault-free Case (Strategy S3). 137

XVI

Listings

4.1 Pseudo Code of the List Scheduler. 67
4.2 Pseudo Code of BER-heuristic. 72
4.3 Pseudo Code of CBF-heuristic. 76
4.4 Pseudo Code of LFR-heuristic. 81
4.5 Pseudo Code of CP-heuristic. 83
5.1 Pseudo Code of the Runtime System. 100

XVII

List of Abbreviations

3SAT 3-SATisfiability

ABAC Algorithm Based on Application Checkpointing
ABSC Algorithm Based on System Checkpointing

ACO Ant Colony Optimization

ACPI Advanced Configuration and Power Interface

API Application Programming Interface

b-level bottom level

BER Buffer for Energy Reduction

BLCR Berkeley Lab Checkpoint/Restart

BNP Bounded Number of Processors

CASPER Combined Assignment, Scheduling, and PowER management
CBF Change Base Frequency

COW Cluster of Workstations

CPp Constant Power

CP Critical Path

CP/MISF Critical Path/ Most Immediate Successors First
CPU Central Processing Unit

CPUFreq Central Processing Unit Frequency

cT Completion Time

D Duplicate

DAG Direct Acyclic Graph

DBUS Duplication-based Bottom-Up Scheduling

DD Dummy Duplicate

DFTS Distributed Fault-Tolerant Scheduling

DPM Dynamic Power Management

DRAM Dynamic Random Access Memory

DRFT Dynamic Replication of Fault-Tolerant scheduling
DSC Dominant Sequence Clustering

DUPS Duplication-based scheduling Using Partial Schedules
DVEFS Dynamic Voltage and Frequency Scaling

DVS Dynamic Voltage Scaling

DYTAS Dynamic TAsk Scheduling

E Energy consumption

EOTD Energy Optimization scheduling for Task Dependent graph
EP Energy for Performance

FT Fault Tolerance

FT-MPI Fault-Tolerant Message Passing Interface

XVIII

FTWS
GEV
GHz
HA
HCP
HLF
HLFET
HPC
IDA*
ILP

J

LAN
LDCP
LFR
LLREF
LP
LPT
LTB
MC
MHz
MIMD
MISD
MMI
MP-SoC
MPI
MPP
ms
MSR
MultiOp
NDEFS
NUMA
OpenMP
P

PAPI
PCAM
PDS
PE
PKG
POSIX
PPO
PP1
PU

PY
RAID

Fault-Tolerant Workflow Scheduling
Generalized Extreme Value

GigaHertz

High Availability

Heterogeneous Critical Path

Highest Level First

Highest Level First with Estimated Times
High Performance Computing

Iterative Deepening A*

Integer Linear Programming

Joule

Local Area Network

Longest Dynamic Critical Path

Lazy Frequency Re-scaling

Largest Local Remaining FExecution First
Longest Path

Longest Processing Time

Large Test Benchmark

Memory Controller

MegaHertz

Multiple Instruction Multiple Data
Multiple Instruction Single Data
Maximum Makespan Increase
MultiProcessor System-on-Chip

Message Passing Interface

Massively Parallel Processor

milliseconds

Model-Specific Register

Multiple Operation

Nearest Deadline First Served
NonUniform Memory Access

Open Multi-Processing

Power consumption

Performance Application Programming Interface
Partition Communicate Agglomerate Map
Pruned Depth-first Search

PErformance

Package

Portable Operating System Interface for uniX
PowerPlane(

PowerPlanel

Processing Unit

Papadimitriou Yannakakis

Redundant Array of Independent Disks

XIX

RAM
RAPL
RUPS
S
sb-level
SCC
SDE
SED
SIFT
SIMD
SISD
SLS
SMT
SPMD
SSE
SSF
STG
t-level
TB
TDB
UHPO

Random Access Memory

Running Average Power Limit
Runtime system for User Preferences-defined Schedules
seconds

static bottom level

Single-chip Cloud Computer
Scheduling — Duplicates — Energy
Scheduling — Energy — Duplicates
Software Implemented Fault Tolerance
Single Instruction Multiple Data
Single Instruction Single Data

Simple List Scheduler

Simultaneous MultiThreading

Single Program Multiple Data
Streaming Single instruction multiple data Extension
Standard Schedule Format

Standard Task Graph

top level

Test Benchmark

Task Duplication-Based

Use Half PUs for Originals

ULFM-MPI User Level Failure Mitigation Message Passing Interface

UMA
UNC
VLIW

W

WQR
WQR-FT
Ws

Uniform Memory Access

Unbounded Number of Clusters

Very Long Instruction Word

Watt

WorkQueue with Replication

WorkQueue with Replication Fault-tolerant
Watt-second

XX

1 Introduction

Today’s computer systems typically consist of several processing units (PUs) in order
to achieve high computing power, starting from common desktop computers, where
usually four to eight cores are integrated on a single processor, up to manycores,
clusters, grids and clouds that include dozens, hundreds or thousands of PUs. In
addition, many problems like weather forecasting, simulating rush hour traffics or
modeling vehicle constructions are complex and massively parallel. Corresponding
algorithms can be parallelized onto several PUs to speed up the execution or to
increase the degree of details. Therefore, corresponding applications are decomposed
into several distinct parts and scheduled onto various PUs. Often, dependencies
between the parts of an application exist, because results of parts are used as input
for successor parts. In this case, these parts are called tasks. The schedule of such a
complex parallel application can be created statically prior to or dynamically during
the execution. Static scheduling is typically performed with the help of a task graph
that represents the tasks and dependencies between them.

However, with a larger number of PUs and tasks the probability of a fault or
failure during the execution of an application increases. As a failure of a PU often
causes high economic costs or life-critical situations, the reliability of a parallel
platform is crucial. A failure can result from both a hardware fault (e.g. a damaged
processor core or a corrupted network connection) or from a software fault (e.g. the
program stops or is interrupted for some reason). Typically, faults are tolerated
by redundancy. One kind of fault tolerance is the task duplication where for each
task a copy — a so-called duplicate — is created on another PU. In case of a failure,
the duplicate is used to continue the schedule execution. The performance of the
system in the fault case will then benefit from the duplicates, since the progress of
the schedule can seamlessly be continued by the tasks” duplicates.

To maximize performance in static schedules, it is critical to minimize the length of
a schedule, the so-called makespan. However, integrating fault tolerance techniques
typically results in performance overhead. This leads to increasing makespans.

Therefore, a trade-off exists for this two-dimensional scheduling problem.

The problem of minimizing the energy consumption is another issue emerging es-
pecially in recent years, as high energy consumption causes high costs and negatively
influences the environment. In a computer system, the processor is one of the most
energy consuming components. To reduce the energy consumption of a processor
and thus for a schedule execution, computer systems typically support energy saving
features like scaling voltage and frequency of a PU dynamically according to its us-
age rate. While the energy consumption is improved by scaling the clock frequency
and voltage of a PU to an energy-efficient level, the performance of a schedule is
usually decreased because typically the task execution is slowed down. Therefore,
another trade-off exists for this two-dimensional scheduling problem.

Additionally, when integrating fault tolerance into the schedule, the tasks’ dupli-
cates require extra resources because the task is actually executing simultaneously
on various PUs. In the fault-free case this is regarded as energy wasting. Therefore,
in this thesis the interplay between the three criteria performance, fault tolerance
and energy consumption is explored and discussed for manycores and grids as two
common parallel platforms with a large number of PUs.

The following research questions can be formulated:

Is it possible to combine all three criteria?
How do these criteria influence each other?
What options do users have to reach their preferences?
How to realize a corresponding runtime system?

How to model the power consumption to predict the energy?

The main objectives of this thesis are therefore to integrate fault tolerance into
schedules by task duplication and to minimize the energy consumption by using
frequency and voltage scaling. Additionally, the preferences of a user are represented
by different strategies and options. Next to these objectives, a performance loss of
a schedule by integrating fault tolerance and energy efficiency aspects is avoided
as far as possible. A power model for real systems with an acceptable accuracy
is proposed, to predict the energy consumption. A runtime system is provided by

using existing methods without changing the operating system of PUs.

Contributions

The contribution of this thesis can be subdivided into three parts:

Fault-tolerant and Energy-efficient Scheduler Although the optimization for
all two-dimensional combinations of performance, fault tolerance and energy con-
sumption is well researched in the literature, the three-dimensional optimization is
rarely addressed. There exist a few exceptions that focus on real-time systems where
tasks have to be executed in predefined time frames or within a certain deadline.
Therefore, the performance in corresponding approaches is the major objective. In
addition, typically transient faults are considered in these systems. In this work,
permanent faults are considered and innovative scheduling heuristics and strategies
are presented that combine all three criteria without a real-time constraint. Hence,
in this work a broader range is considered, which is not yet addressed in previous
work. In each strategy, different criteria are dominating to provide a scheduler with
options for various preferences of a user. Next to strategies that focus on the fault-
free case also strategies for the fault case are presented. In related works, the focus
usually is only put on heuristics or strategies for one of both cases. In this work, all
proposed scheduling strategies are constructed to be used with an already existing
schedule (and task graph). Therefore, the classical scheduling is separated from
the fault-tolerant and energy-efficient extensions. This has the advantage that the

strategies can be used independently without a restriction to a specific scheduler.

Trade-off Study An overall and detailed trade-off study between the three criteria
does not yet exist in the literature. Often only smaller parts are considered sepa-
rately. Additionally, another indirect trade-off between the fault-free and fault-case
is left out in previous work. With this thesis, all the above-mentioned trade-offs
are analyzed and visualized in order to obtain detailed insights into the interplay
between performance, fault tolerance and energy consumption in general, but also
for common computer systems. This is helpful for developers to find appropriate

algorithms and for system architects in order to plan and design new platforms.

Runtime System As an operating system lacks information about a task graph, it
cannot scale the frequencies efficiently or handle with failures of PUs during the exe-
cution of a schedule. In this work, a prototype runtime system is therefore presented

that combines the information about task graph and schedule with supporting fault

tolerance and frequency scaling. The concepts and methods used in the runtime
system are explained in detail to show how such a runtime system can be developed

without changing the operating system.

Structure of the thesis

Chap. 2 explains all relevant basics for this thesis. Starting from various types and
classifications of parallel platforms the process of developing parallel applications to
benefit from those platforms is described. Scheduling as part of the parallel appli-
cation design is separately discussed in detail. Then, the chapter introduces fault
tolerance and energy efficiency as two major objectives next to the classical perfor-
mance objective in scheduling. Chap. 3 discusses the trade-off between the three
objectives, where firstly the two-dimensional optimization for all combinations is
explained. Secondly, the three-dimensional optimization is considered. Finally, the
chapter investigates in an estimation of upper and lower bounds for all objectives.
Chap. 4 presents several energy-efficient and fault-tolerant heuristics and options
after a short review of the previous work. Then, nine strategies are formulated
(including two strategies from the previous work) that represent different user pref-
erences in both the fault-free and fault case. The chapter also describes energy
optimal solutions by using integer linear programming. In Chap. 5 a fault-tolerant
and energy-efficient prototype runtime system is presented with all its components
like a system check tool, the runtime system itself and also a power model for ac-
tual multicore processors. Chap. 6 discusses the experiments and evaluation of the
strategies with various test sets for a generalized power model followed by experi-
ments on common Intel processors in the mobile, desktop and server field and for
the Intel SCC as an example manycore processor. Next to the evaluation of the
strategies, an analysis and visualization of the trade-off between all objectives fol-
lows. Chap. 7 concludes the thesis and finally, Chap. 8 introduces several future

research directions.

2 Background

In recent decades, both computer systems and applications were in an ongoing
change. The performance of a computer was improved over the years by increasing
the clock speed of the processor, introducing pipelining and superscalar execution
and using fast memories (caches) to bridge the gap between the slow RAM (Random
Access Memory) access times and the high processor speed [73|. While older com-
puter systems until the mid-80’s consisted of a single PU (Processing Unit), so called
uniprocessor systems, newer computer systems include several PUs to increase the
performance. In addition, computers were and still are increasingly interconnected
not only by LANs (Local Area Network) but also through the Internet since its
introduction in the late-80’s. This trend is due to physical limitations on the one
hand, a further increase of the clock speed of a processor is very cost intensive and
ineffective because it leads to disproportional high power consumption and heat. On
the other hand, the distributed nature of many problems that can be subdivided
into several smaller parts and solved in parallel, motivated the decision of developing
and using parallel computing platforms to improve the performance [73].

However, in terms of software, the resulting parallel applications have to be
distributed suitably onto the multiple PUs. Therefore, an efficient mapping and
scheduling is essential. Next to the performance, the reliability of a system is of
central interest. In several parallel computing platforms like clusters, grids and
clouds, fault tolerance is indispensable, because the probability of an error or a
failure increases with the number of PUs. Also the network used to communicate
between the PUs might be fault-prone.

In recent years, another challenge was arisen besides fault tolerance and perfor-
mance, which is energy efficiency. Computer systems consume significant power and
thus energy. To reduce the power consumption, modern computer systems support
several processor features to save energy like DVFES (Dynamic Voltage and Frequency
Scaling) or DPM (Dynamic Power Management). Other components e.g. the hard
disk, the screen, or a couple of ports support sleep states or can be switched off

completely, when the components are not needed for the moment.

In Sect. 2.1 a short overview of different parallel platforms is given and some
classifications are introduced. The developing process of parallel applications is
described in Sect. 2.2. Scheduling is explained in Sect. 2.3. Different fault tolerance
techniques are presented in Sect. 2.4. Finally, the energy efficiency is described in
Sect. 2.5.

2.1 Parallel Platforms

2.1.1 Types

Today’s computer systems can be subdivided into several types of parallel platforms.

The most common types are explained in the following:

Uniprocessor/Singlecore Processor Computer systems with one PU are called
uniprocessor or singlecore processor systems. This type is not related to parallel
platforms but it is mentioned for the sake of completeness. In such systems, par-
allelism is achieved by multitasking or SMT (Simultaneous MultiThreading) where
several programs are executed quasi simultaneously on one PU. When an instance
of a program is running, it is called a process. A process is assigned to an address

space and typically consists of several light weight processes called threads [172].

Multicore Processor A processor that consists of multiple cores in a single chip
with a shared memory is a so-called multicore processor. Those computer systems
are used for both executing several sequential programs on different cores or parallel
programs on several cores simultaneously. This type of parallel platform is the most
common in general-purpose computers. In todays’ multicore processors the number

of cores is typically between two and 16 cores.

Manycore Processor Manycore processors consist of dozens or hundreds of cores
on a single device. There is no specific limit in the number of cores to differ be-
tween manycore and multicore systems. But in contrast to multicore processors, the

hardware is usually optimized for the execution of parallel programs.

Multiprocessor When several processors are included in a computer system (also
with a shared memory), it is called a multiprocessor system. The processor type in

those systems can vary from singlecore to multicore processors. Thus, there does not

exist a restriction to the type of used processors. One special kind of multiprocessors
is the so-called MP-SoC (MultiProcessor System-on-Chip) [96]. In such system, all
or most components of a computer system are integrated within a single chip. In
MP-SoCs, several other components next to the processors are included onto the
die like a high-speed network or different memories. MP-SoCs are mainly used in
mobile or embedded systems, due to the lack of space and to minimize the power

consumption.

Array-/Vector-Processor An array or vector processor is a microprocessor that
executes one instruction on an array or vector of data elements instead of on sin-
gle data elements at a time. Vector processors are typically used to improve the

performance of numerical simulations [81].

VLIW Processor VLIW processors (Very Long Instruction Word) achieve high
levels of instruction level parallelism by executing long instruction words that consist
of multiple operations, so-called MultiOps. A MultiOp is a set of multiple control,
arithmetic and logic operations that are executed concurrently on a VLIW processor
[134].

Multicomputer Multicomputer is a wide spread term. Under this type of parallel
platform several systems are considered where the computers within a system are
interconnected by a LAN or by the Internet. These systems consist of a distributed

memory:

e Computer Cluster: In a computer cluster, several computers are tightly con-
nected through a LAN to work together. Each computer has its own operating
system, and the communication between those is done by message passing.
The administration of all computers is directed to a single organization. The
most common types of computer cluster are HPC-Cluster (High Performance
Computing) and HA-Cluster (High Availability). If the computers are inter-
connected by a high-speed proprietary interconnection network, the cluster is
also called MPP (Massively Parallel Processor) or supercomputer. Another
type of computer cluster is the so-called COW (Cluster of Workstations). As
the name already indicates, in this type of computer cluster, the computers are
regular PCs or workstations that are connected to each other. In contrast to

conventional computer clusters, the computers are usually cheaper, but more

place is necessary for the whole system and the system is more distributed

over an area and not related to a single room or building [171].

e Grid System: A grid system consists of several computers or computer clusters
that are interconnected through a LAN or through the Internet. A main
difference between computer clusters and grids is that the administration of
the computers in a grid system is directed to different organizations. Users can
submit their programs to the grid system where a grid middleware coordinates
and distributes the programs to the different grid nodes (computers). One of
the main challenges in grids is to offer computing power as needed by the user

like electricity from a socket.

e Cloud Computing: Cloud computing is a kind of internet-based computing
where a user can rent computer systems, applications, storages etc. on de-
mand as needed and accesses to it remotely. A cloud is, from the perspective
of a parallel platfrom, a multicomputer system that consists of interconnected
computer nodes like computer clusters. In contrast to grid computing, virtu-

alization is typically used in cloud computing.

2.1.2 Classifications

The huge number of different parallel platforms that were built over the years led to
many approaches of classifying these into categories. An early classification of par-
allel architectures was given by Flynn in the year 1972 [61]|. He classified computer
systems based on the number of instruction and data streams, where a stream is a
sequence of instructions or data. Parallel architectures can be subdivided in four

categories:

e SISD — Single Instruction (stream), Single Data (stream):
Conventional sequential machines fall into this category. The CPU (Central
Processing Unit) acts on a single instruction stream and one data item is

processed per cycle.

e SIMD - Single Instruction (stream), Multiple Data (stream):
Several processors execute the same instruction but with different data ele-
ments. Array-, vector- and VLIW-processors are examples assigned to this

category.

e MISD — Multiple Instruction (stream), Single Data (stream):
The type of parallel computers that would be related to this category is very

uncommon. Therefore, in general this category applies to be empty.

e MIMD — Multiple Instruction (stream), Multiple Data (stream):
Here, multiple processors or threads execute different instructions on different
data elements. One important subclass in this category is SPMD — Single
Program, Multiple Data. Each processor executes the same program but on
different data elements. The execution of the program can be at any point
for different processors. Multicomputer, multiprocessor, multi- and manycore

processors are examples that fall into this category.

In Fig. 2.1 the four categories are depicted. The columns represent the number

of data streams, the rows represent the number of instruction streams.

Data Stream(s)
Single Multiple

4 R

SISD SIMD

Uniprocessor Array-, Vector-,
VLIW- Processors

Single

MISD MIMD

Multiprocessor,
Multi-, Manycores
Multicomputg/

Figure 2.1: Flynn’s Classification of Computer Systems [139].

Instruction Stream(s)

Multiple

Parallel platforms can also be classified into categories according to the organi-
zation of the memory, so-called shared memory systems and distributed memory

systems:

e Shared Memory System:
In a shared memory system, all processing units access one memory. Shared
memory systems can be subdivided into UMA (Uniform Memory Access) and
NUMA (NonUniform Memory Access) machines. In the former, all PUs can
access every memory location in the same time. In contrast, in the latter, the
memory modules are close to the PUs and therefore the access time differs

between close and distant modules.

e Distributed Memory System:
In these systems, every PU has its own memory. The communication between

the PUs (and memories) is done via messages.

Following Tanenbaum [171] in general, a combination of both classifications with
the different types of parallel platforms leads to a detailed taxonomy, as shown in
Fig. 2.2. In this thesis, the major focus is directed to the parts of the figure that

are connected by reinforced lines.

[Parallel Platforms]

[. SR] [SIMD]
Uniprocessor

Vector/Array VLIW
processor processor

]

Shared memory [Distributed memory]

[Multi-/Manycore, Multicomputer
Multiprocessor

~

MPP /Super-
Computer,
Cluster

(ot) [)

Figure 2.2: Tanenbaum Classification of Parallel Platforms [171].

COW

(o | (o

J

Sometimes parallel platforms are classified in homogeneous and heterogeneous
systems, according to the composition of processing units. Homogeneous systems
consist of identical processing units where as in heterogeneous systems different
types of processing units are used. Examples can be found for shared memory
systems like the big. LITTLE technology [11] in ARM’s multicore processors and for
distributed memory systems like clusters, grids and clouds. Another categorization
is related to the application field like embedded systems or real-time systems. An
embedded system is a system that is integrated into an electronic device. It executes
repeatedly a single program and reacts on changes in the system’s environment. It

often has to produce results in real-time. Therefore, an embedded system is usually

10

a real-time system [179]. A major characteristic of a real-time system in comparison
to a non-real-time system is the time constraint. Each program (part) in a real-
time system usually has a release time at which the program becomes available
and also a deadline, at which the completion of the program execution must be
guaranteed. Thus, not only the logical correctness of an execution is important, but
also the time frame for the execution has to be met. Real-time systems are typically
subdivided into hard and soft real-time systems. In a hard real-time system, a
failure occurs when any deadline is not met, i.e. all deadlines are guaranteed to be
met. For example, the brake control system of a vehicle must be a hard real-time
system, as an execution delay can lead to life-critical situations. In contrast, in soft
real-time systems, a completion of the execution within the deadline is desired but
an exceeded deadline does not directly lead to a failure. In image processing for
example, a delayed completion of an image leads to a lower quality but does not

cause a life-critical situation [118].

2.2 Parallel Applications

Many real-world situations are complex and massively parallel, e.g. simulating cli-
mate changes, rush hour traffics and planetary movements or modeling vehicle con-
structions and forecasting the weather [22]. Numerous other examples exist in all
sciences like in mathematics, physics, chemistry, biology, computer science, or eco-
nomics. Such complex problems can usually be parallelized and executed onto sev-
eral computers, e.g. to speed up the execution or to include more details in a model.
The design and implementation of corresponding parallel applications or algorithms
are an important challenge to benefit from the underlying parallel platforms.

The general process of developing parallel applications is depicted in Fig. 2.3, mod-
eled after Sinnen [164]. Starting with the specification of an application, the design
of the application is generated by decomposing the computation into parts and map-
ping/scheduling the resulting parts to PUs. Then, the implementation follows to
obtain an executable parallel program. The generation of the design is sometimes
subdivided into more than two phases. Foster [63| for example describes four phases
in his PCAM method to design a parallel program. PCAM is an acronym for the

different phases, the partition-, communication-, agglomerate- and map phase.

11

) S
/ Design \ Implementation
Decomposition Mapping,

scheduling

Shared memory
and/or

Message passing
programming

Application specification
Executable program

¥ O\ L

Figure 2.3: Process of Developing a Parallel Application [164].

2.2.1 Design

Typically, two steps are performed to design a parallel program.

Decomposition In a first step, the computation has to be divided into smaller
parts that can be processed concurrently. This process is called decomposition or
partitioning. Depending on the number and size of the parts, the granularity of a
decomposition can be subdivided into fine-grained, a large number of small parts,
and coarse-grained, a small number of large parts. Decomposition techniques can be
broadly subdivided into four categories: recursive, data, exploratory and speculative
decompositions. Recursive decomposition is usually used for problems that can be
solved by a divide-and-conquer strategy, i.e. dividing the problem recursively into
smaller independent subproblems followed by a combination of their results. Data
decomposition is desired for algorithms operating on a large data structure. Depend-
ing on the type of the problem, the partitioning is applied to the input, intermediate
or output data or a combination of these data. Exploratory decomposition is related
to problems, where the underlying computations correspond to a search of a space
for solutions. The search space is partitioned into smaller parts that can be searched
for solutions concurrently. Finally, the speculative decomposition is considered for
applications, whose computation branches are dependent from the output of preced-
ing computations. Therefore, all (or a subset of all) possible branches are executed
concurrently in advance so that the result of a proper branch can be chosen, when

the corresponding output of the preceding computation is available [73].

12

Mapping/Scheduling In a second step, the parts have to be assigned to various
processors, called mapping and the execution order has to be determined, called
scheduling. While the determination of the execution order can only be accomplished
for an existing mapping, generally both the spatial (i.e. mapping) and temporal
assignment of the parts to PUs is considered, when referring to scheduling [164]. One
of the major challenges to achieve a good performance is to balance the load over
all processors, i.e. scheduling the parts of the computation to processors so that the
execution on all processors finishes at the same time. The parts of the computation
can be independent of each other so that the order of the parts is not important for
the execution. Then, the parts are called jobs. If there are dependencies between
the parts, for example the results of parts are used as input for next ones, they are
called tasks. Next to this, the time for transferring the results has to be considered.
While the transfer time on a single core is very small, it grows significantly up when
using different processors that are interconnected via a LAN or the Internet. A
minimization of the interaction overhead is then additionally striven, to get a good
performance. Also the job and task flexibility can differ. For example, when jobs or
tasks require a fixed number of resources, then they are called rigid. When they can
be parallelized onto several PUs once during the execution, they are called moldable.
If the number of PUs can be changed during the execution, the jobs or tasks are
called malleable [120]. The resulting schedule is then used to create the parallel

program. In Sect. 2.3 scheduling is described in more detail.

2.2.2 Models

The structure of a parallel application or algorithm is typically given by a parallel
algorithm model that combines various techniques and strategies for the decompo-
sition, mapping, scheduling, and for the minimization of the interaction overhead.

The most common parallel algorithm models are described in the following [73]:

Task Graph Model Task graphs model a variety of parallel applications. A task
graph G = (V, E) is typically a DAG (Direct Acyclic Graph) that consists of nodes
v € V and edges e € E. The nodes represent the tasks where the workload, e.g.
the execution time or number of instructions, is given as a node weight. The edges
represent the dependencies between the tasks. Here, a given edge weight describes
the communication costs, usually considered as transfer time. Task graphs can be

statically or dynamically mapped onto PUs.

13

Work Pool Model 1In a work pool model, the work given as jobs or tasks is
dynamically mapped onto PUs. When a PU finishes its execution, a new available
job or task is assigned to it. The information of the work order is usually stored
in a shared list, priority queue, hash table, or in a tree. New tasks or jobs can be

dynamically added to the pool.

Master-Slave Model In this model, typically one master-process generates the
work and allocates it to the slave-processes. The slave-processes execute the work
and send the results back to the master. The work can be generated statically
before allocating it to the slave-processes or dynamically, while the slave-processes
are busy. In this model, the master-process might become a bottleneck, when the
tasks are too small or the slave-processes are too fast so that the slave-processes

have to wait for next tasks and cannot continue the execution directly.

Pipeline or Producer-Consumer Model The pipeline model is based on a chain
structure. The tasks are once allocated onto the PUs. Then, each PU receives some
input data, executes the corresponding task that is assigned to it and generates some
output data for the next task on the next PU. Thus, a data stream is processed by
this model, where the mapping of the tasks is fixed and only data changes during
the execution of the whole program. This kind of application structure is sometimes

called stream parallelism.

Data-Parallel Model 1In the data-parallel model, tasks perform similar operations
on different data. Typically, the tasks are mapped and scheduled statically onto the
PUs. The execution is sometimes done in different phases, where synchronization
between the phases is necessary to receive new data. One example of a data-parallel

algorithm is a matrix multiplication.

2.2.3 Implementation

The implementation of parallel programs is typically based on two paradigms. As
parallel platforms can be classified into shared memory and distributed memory
platforms (see sect. 2.1), the programming of parallel applications can be subdivided
into shared memory programming and distributed memory programming, the latter

called message passing.

14

Shared Memory Programming Shared memory programming is typically done
with threads that use a shared address space to communicate to each other. A
thread is a lightweight process that consists of a single stream of instructions. When
using a shared address space over all threads, an appropriate synchronization of the
memory access is necessary to guarantee the correctness of the data. Common APIs
(Application Programming Interfaces) for shared memory programming are POSIX
threads (Portable Operating System Interface for uniX) [21| and OpenMP (Open
Multi-Processing) [136].

Message Passing Programming In contrast, in message passing programming,
the communication between the processes is explicitly conducted using messages.
Each process has its private address space for the data. The communication is
basically done with send and receive operations to transfer data from one process to
another. The MPI (Message Passing Interface) [127| is typically used for this kind
of programming.

These two paradigms are related but not restricted to its corresponding class of
parallel platforms. Thus, it is possible to use message passing on a shared mem-
ory platform or vice versa shared memory programming on a distributed memory
platform. But usually, this leads to a lower performance. Often both paradigms
are combined in one program, e.g. when using a multicomputer with multiprocessor

nodes [73].

2.3 Scheduling

Tn general, scheduling is the process of assigning activities to resources in time.
Examples can be found in various application fields like in production planning
and manufacturing, booking systems, or in a simple diary. In computer science,
scheduling often describes the spatial and temporal assignment of computational
parts onto different PUs (see Sect. 2.2). The corresponding scheduler that manages
the scheduling process can be realized in either hardware or software. The informa-
tion about where and when the parts of the computation should be executed, are
then stored in a schedule [44].

Scheduling can be used for several challenges like minimizing the overall comple-

tion time of an application (makespan), for throughput constraints, or minimizing

'The organization of this section is partially based on the presentation in my German diploma
thesis [44].

15

the energy consumption of a computer system, to mention only a few. Often a
combination of multiple challenges, usually two or three, is desired.

A corresponding scheduling algorithm is typically based on a model that contains
at least particulars of the target system architecture and of the parallel applica-
tion like explained in Sect. 2.1 and Sect. 2.2. Such particulars for example include
whether the target system is a shared memory or a distributed memory system,
whether the system consists of homogeneous or heterogeneous PUs, or how the PUs
are interconnected to each other. For the parallel application, particular features are
important like whether there are dependencies between the parts of the computation
or if there exist transfer times or costs. [44]

Scheduling is a NP-complete problem. Finding an optimal solution is typically
very compute intensive, especially for problems with a large number of compu-
tational parts and PUs. Therefore, instead of finding an optimal solution, often
approximation algorithms or heuristics are used to get a satisfying solution that can
be found within an acceptable period of time.

Every year, hundreds of new scheduling approaches for different parallel systems
and applications with various constraints and objective functions are published so
that a summarization of all scheduling variants is impossible. Also several tax-
onomies with various focuses are proposed in the literature to categorize the schedul-
ing algorithms like in [38], [50], [110], [120], [156] or [173]. However, a complete
description of all taxonomies would go beyond the scope of this thesis. Instead, in
the remaining part of this section a classification of scheduling algorithms for paral-
lel applications is described that includes differentiations important for this thesis.
Furthermore, exemplary representatives for each class are given or it is sometimes
referred to corresponding techniques in the literature. Finally, key figures are pre-

sented to validate different scheduling techniques.

2.3.1 Classification

Scheduling algorithms can be subdivided into several classes. In Fig. 2.4 a taxonomy
of scheduling algorithms essentially based on [84] is shown. The classes that are
connected by reinforced lines represent the focus of this thesis and, therefore, are
described in more detail. For the remaining classes, typical properties are described.

A further subdivision of these classes is left out for reasons of clarity.

16

Task Job
scheduling scheduling

[Dynamic} [Hybrid }

Sub-
Optimal

Heuristic

[Approximation]

Deterministic

Stochastic

List- Cluster- Duplication-
based based based

Figure 2.4: Taxonomy of Scheduling Algorithms [84].

Task vs. Job Scheduling A first categorization of scheduling algorithms is related
to the dependencies between the parts of a computation. If the computation consists
of independent parts (jobs), then the scheduling is also called job scheduling. A job
can be one part of a parallel program, but it also can for example be related to a
group of combined parts like bags of tasks, to a whole program or to a workflow.
However, jobs can usually be scheduled without any specific order?. Therefore, a
typical goal of job scheduling is the optimization of the overall system performance

[110]. Often (meta) heuristics are applied to find an optimized solution.

2There exist a few exceptions e.g. in real time systems.

17

Braun et al. [34] present eleven different job scheduling heuristics for heteroge-
neous distributed computing systems. The scheduling is done statically, i.e. prior to
execution. The goal of the heuristics is to minimize the total execution time.

For computational grids, Subramani et al. [168] present another job scheduling
algorithm. They use distributed scheduling algorithms with multiple simultaneous
requests to improve the performance.

Gao et al. [64] present adaptive job scheduling in grid environments based on two
algorithms. They use an algorithm for the system-level to decide on which node
a single job should be executed in a shortest time and a genetic algorithm for the
application-level that is used to minimize the average completion time of all jobs.
Two models for a service Grid are designed to predict the completion time of jobs.

In [188], Zaharia et al. present two job scheduling techniques for multi-user map
reduce clusters. With these techniques, they try to improve the data locality and
the throughput. One proposed approach is delay scheduling, where jobs with local
data are chosen first, before also considering jobs with non-local data. The other
approach is copy-compute splitting, where the jobs are divided into two types (copy
tasks and compute tasks), according to their operations.

For job scheduling on computational grids, Pooranian et al. [143] present a hybrid
meta heuristic algorithm. They combine a genetic algorithm for searching the prob-
lem space globally and gravitational emulation for local search. With their approach,
the runtime and number of submitted tasks that miss deadlines are decreased.

Shojafar et al. [161] present a meta-heuristic job scheduling approach for cloud
environments to minimize the makespan. The scheduling algorithm, called FUGE3,
is based on a genetic algorithm combined with fuzzy theory to optimize the load
balancing in terms of execution time and cost.

In [72], Goswami et al. present a deadline stringency based job scheduling ap-
proach for computational grids that is based on an already existing so-called NDFS
(Nearest Deadline First Served) algorithm. They try to improve the dynamic load
balancing by simultaneously receiving job requirements and collecting runtime sta-
tus informations of the resources for the allocation of the jobs.

Lopes and Menascé [120]| propose a current approach to categorize job scheduling
algorithms. They present the trends of job scheduling research for the last decade
based on over 1,000 analyzed job scheduling papers and provide a taxonomy of job
scheduling. They classify the most cited 100 problems with their taxonomy into

ten groups, that differ next to others in the used environment and the structure

3The authors omit a long form of the term FUGE.

18

of jobs. Additionally, they give for each group the proposed solutions with typical
properties.

When there exist dependencies between the parts (tasks), the scheduling is called
task scheduling. Task scheduling is often done with the help of a task graph that
represents the structure of a parallel program (see Sect. 2.3). The information of the
task graph is then used to create an appropriate schedule. Therefore, task scheduling
is sometimes called task graph scheduling. A common challenge of task scheduling is
the minimization of the makespan. (Task) Scheduling can further be subdivided by

the time, when the scheduling process is done, into static and dynamic scheduling.

Static vs. Dynamic Static scheduling is done prior to execution, sometimes called
offline. In contrast, dynamic scheduling is done during the execution, called online.
While the static scheduling does not influence the runtime of the corresponding
application, it cannot react as the dynamic scheduling on unpredictable situations
that might occur during the execution. However, the calculations for the dynamic
scheduling prolong the execution of the parallel application and thus the makespan
of the schedule [84][110]. Dynamic scheduling is mainly used for problems, where
no information about the tasks is known prior to execution. Therefore, the goal of
dynamic scheduling is usually Load Balancing.

For example, Ramamritham et al. [151] describe a dynamic task scheduling ap-
proach for hard real-time distributed systems. They assume that each node within
the system has its own scheduler and a set of periodic tasks that are guaranteed to
meet their deadlines. Additionally, aperiodic tasks can arrive at any time on any
node in the system. The scheduler on the corresponding node checks whether the
task can be assigned to that node without violating the deadline constraints. If the
task cannot be allocated suitably on the local node, the scheduler interacts with the
schedulers of other nodes by using a bidding scheme to determine on which node
the task can better be allocated. Then, the task is sent to the corresponding node.

Manimaran and Murthy [125] present another approach for real-time systems.
They assume to have a multiprocessor system and aperiodic tasks that can arrive
at any time. A dynamic scheduler is used to allocate the tasks onto the processors.
Instead of restricting on non-parallelizable tasks, the tasks can be parallelized onto
several processors. The scheduler takes advantage of the task parallelization to meet
the deadline constraints.

In [150], Rahman et al. present a dynamic scheduling algorithm for workflow ap-

plications on global grids. They extend an already existing scheduling approach

19

for homogeneous systems to include heterogeneous and dynamic environments. The
scheduling is done stepwise by calculating dynamically the critical path in the work-
flow task graph and prioritizing tasks to respect the dependencies.

For grid computing systems, Zhang et al. [192] present a dynamic task scheduling
algorithm. They extend a two phase algorithm that originally is used for static
scheduling. The algorithm first selects the tasks and then the processors to allocate
the tasks. The tasks are related to levels, so that equal levels indicate independent
tasks, otherwise there exist dependencies between the tasks.

Amalarethinam et al. [8] present a DAG based dynamic task scheduling algo-
rithm called DYTAS (DYnamic TAsk Scheduling) for multiprocessor systems. The
scheduling is done by using several different task queues: One initial queue, a dis-
patch and completed queue, and individual processor task queues. After starting the
scheduler, the tasks are ordered by their dependencies. Then, the processor queue
is dynamically chosen, where the next task can finish at the earliest time. When the
processor queues become empty, the algorithm stops.

In contrast, static scheduling can only be done, when information about the tasks
and there dependencies are known in advance. Sometimes also a hybrid variant is
used, i.e. a combination of static and dynamic scheduling like in [9], [116], [133] or
[191]. (Static) scheduling can further be subdivided by the quality of the solutions,

into optimal and sub-optimal scheduling.

Optimal vs. Sub-optimal Most of the scheduling problems for parallel applica-
tions are NP-hard [164]. This means that no polynomial-time algorithm exists to
solve the problems optimally (unless P = NP). While for small instances of those
problems optimal solutions might be found within an acceptable period of time, it
is infeasible for larger instances.

Wang et al. [181] present an optimal task scheduling approach for streaming ap-
plications on MP-SoCs. They describe the problem as an ILP (Integer Linear Pro-
gramming) formulation. The objective is to minimize the makespan by avoiding
inter-core communication overhead. Furthermore, they also try to reduce the en-
ergy consumption by using DVS (Dynamic Voltage Scaling).

Shioda et al. [160] present an optimal task scheduling algorithm for parallel pro-
cessing. They propose an ILP formulation, where the objective is the minimization
of the makespan. With their approach, they also try to minimize idle times.

In [85], Honig and Schiffmann present a fast optimal task graph scheduling ap-

proach for homogeneous computing systems. They use a parallel variant of an

20

informed search algorithm based on an IDA*-algorithm (Iterative Deepening A¥),
which is a memory-saving derivative of the well known A*-algorithm [78]. The ob-
jective is to optimize the makespan. Their approach is not restricted to task graph
problems with a small number of tasks, but complex task graphs can be computed
by their IDA*-algorithm as well.

Cho et al. [42] propose an optimal real-time scheduling algorithm for multipro-
cessors called LLREF (Largest Local Remaining Execution First). The algorithm is
based on a fluid scheduling model, i.e. each task executes at a constant rate at all
times. To describe the task execution behavior on multiprocessors, the algorithm
uses time and local execution time domain planes (T-L planes). They show that
scheduling for multiprocessors can be viewed as repeatedly occurring T-L planes,
where a feasible solution for a single T-L plane results in an optimal schedule.

Next to optimal algorithms, two sub-optimal approaches are usually used to find
at least optimized solutions in a short period of time. The first one is to use approx-
imation algorithms to find an approximation of the optimal solution, the second one

is to use heuristics that make their decisions based on predefined assumptions.

Approximation vs. Heuristic In approximation algorithms, the objective to find
an optimal solution is slightly relaxed for finding solutions that are close to the
optimal. However, instead of searching the whole solution space to find an optimal
one, the algorithm stops, when a solution is found that is rated as "good" enough.
Typically a factor p is given that describes the guarantee on how close the solution
to the optimal at least will be. Therefore, these algorithms are sometimes called
p-approximation algorithms.

Giroudeau et al. [69] present in their work an approximation for precedence con-
strained scheduling problems with large communication delays. They focus on mul-
tiprocessor systems and try to minimize the makespan. A lower bound for the per-
formance of an approximation algorithm is given by using a variant of the problem
3SAT (3-SATisfiability) and an impossibility theorem. They propose a polynomial-
time algorithm with a performance ratio of % with ¢ < 2, where ¢ denotes the
communication delay between two tasks.

Chen and Chu [40] present another approach for scheduling malleable tasks. They
assume that the processing time of a malleable task is non-increasing and the work
non-decreasing in the number of processors. Their polynomial-time approximation
algorithm can yield an approximation ratio of 3.4142 and for strictly decreasing

processing times in the number of processors the ratio is 2.9549.

21

For scheduling malleable tasks under precedence constraints, Lepére et al. [114]
present an approximation algorithm. They demonstrate a close relationship to the
allotment problem and design a polynomial time approximation algorithm with a
performance guarantee close to 2.61803 for different special cases and with a guar-
antee of 5.23606 for the general case.

In [87], Hunold presents a scheduling algorithm for moldable tasks on multipro-
cessors. The objective is the minimization of the makespan. He tries to reduce the
critical path while keeping the overall work small by introducing a relative runtime
threshold that defines the minimum runtime improvement of a larger allotment.

For scheduling malleable tasks under general precedence constraints, Jansen and
Zhang [94] present an approximation algorithm. They developed an improved ver-
sion of their previous approximation algorithm with a ratio of 4.730598.

Giinther et al. [74] present in their work a scheduling and packing approach for
malleable tasks with precedence constraints of bounded width.

In contrast, heuristics make their decisions based on predefined assumptions, i.e.
a heuristic follows fixed rules that are defined based on experiences with the treated
problem type. Therefore, heuristics are usually very fast in finding a solution, but
there is no guarantee to find an optimal or at least a near to the optimal solution.
The results of a heuristic are usually compared to results of other heuristics or to
optimal solutions to get informations about the quality of the heuristic. Heuristics

can further be subdivided into stochastic and deterministic methods.

Stochastic vs. Deterministic Stochastic methods try to find a possibly optimal
solution with the help of random-based algorithms. During the runtime, either ex-
actly one solution can be considered or several alternative solutions [44]. Techniques
that only consider one solution are Tabu Search [70] and Simulated Annealing [158].
Representatives for considering several solutions are Genetic Algorithms [62] and
Swarm Algorithms [137].

Blum [29] presents in his work an introduction and recent trends of a swarm
algorithm, the so-called ACO algorithm (Ant Colony Optimization). In the nature,
ants produce messenger substances, so-called pheromones, to find a way to some food
and back to their colony. Over time, a shorter path results in a more dominant trace
and the probability increases that other ants will also follow this trace. This behavior
leads to an optimized solution. In the ACO algorithm, the ants are represented by
agents and the pheromones by values depending on the quality of a solution. The

values are then stored in a so-called pheromones-matrix.

22

Singh [162] for example presents a genetic algorithm for task scheduling in parallel
systems. He considers dependencies between tasks and assumes to have no commu-
nication costs. As target system, he uses multiprocessor systems with heterogeneous
Processors.

For scheduling tasks with precedence constraints, Omara and Arafa [135] present
two genetic algorithms. They try to improve the performance of the genetic algo-
rithms by adding heuristic principles. For the first algorithm, two fitness functions
are used in a row with the objectives to minimize the makespan and to balance the
load. The second algorithm is extended by a duplication-based technique to reduce
the communication overhead.

Daoud and Kharma [48| present another genetic algorithm for task scheduling
in heterogeneous distributed systems. They use a customized genetic algorithm to
produce optimized schedules. The algorithm starts with a scheduling heuristic for
the initial population. The schedule is then located at an approximate area in the
search space that is used for the genetic algorithm to improve the schedule.

Porto and Ribeiro [144] present a tabu search approach for heterogeneous pro-
cessors. They consider task scheduling and show that their approach results in
solutions that are improved by up to 30 percent compared to the most appropriate
algorithms.

Deterministic methods, in contrast, can further be classified into list-based, cluster-

based and duplication-based algorithms.

List- vs. Cluster- vs. Duplication-based In list-based method, nodes (tasks) are
ordered with priorities in a scheduling list. To prioritize tasks, different approaches
are proposed like CP (Critical Path), HLF (Highest Level First), LP (Longest Path)
or LPT (Longest Processing Time). List scheduling can be done statically or dy-
namically. In the static variant, the tasks are obtained prior to execution from the
beginning of the list and assigned to PUs where they can earliest start. However,
the dynamic variant consists of three steps: prioritize unscheduled tasks, select the
task with the highest priority and allocate it to a PU. After each allocation, the
scheduling list is rearranged. The priorities are assigned with the help of task at-
tributes. The most common are the so-called t-level (top level) and b-level (bottom
level). The t-level is the longest path between an entry node and the current node,
by considering the node and edge weights. The b-level is the longest path between
the current node and an exit node and is bounded by the critical path [110].

23

Adam et al. |2] for example present list-based approaches. They propose a HLFET-
method (Highest Level First with Estimated Times). In this method, a static b-level,
so-called sb-level, is used to prioritize the tasks in a scheduling list. In contrast to
the common b-level, the sb-level only considers the node weights. After prioritizing
the tasks, they are allocated to the PUs by a greedy mapper. A greedy mapper
assigns each task to the PU that can finish the execution of a task first.

Kasahara and Narita [101] present an enhanced version of the HLFET-method.
They propose a so-called CP/MISF-method (Critical Path/ Most Immediate Succes-
sors First). In contrast to the HLFET-method, tasks with same priorities are sorted
in the scheduling list by the number of direct successor tasks and not randomly.

In [49], Daoud and Kharma present a list-based algorithm for heterogeneous dis-
tributed systems. They consider dependent tasks with communication costs and
try to minimize the total execution time. The so-called LDCP (Longest Dynamic
Critical Path) algorithm consists of three phases. In each scheduling step, a task
selection, processor selection and a status update is done. The status update is nec-
essary, because only when a task is assigned to a processor, the computation time
is known and communication costs of succeeding tasks can be updated.

Macey and Zomaya [124] present a performance evaluation of list scheduling algo-
rithms. They compare the performance of different popular list scheduling heuristics
like HLFET and others. Their results demonstrate the inadequacies of the list-based
heuristics in communication-intensive cases.

For heterogeneous target systems, Bjgrn-Jgrgensen and Madsen [27]| present an-
other approach. They propose an algorithm called HCP-algorithm (Heterogeneous
Critical Path) that considers both concurrently the interprocessor communication
and the heterogeneity of the target system.

In [165], Sllame and Drabek present a list-based scheduling algorithm for high-level
synthesis. This algorithm produces near-optimal schedules by including information
extracted from a data flow graph (like the number of successors and predecessors)
into the priority functions of the scheduler.

In cluster-based task scheduling, the makespan of a schedule is optimized by
combining tasks suitably to reduce communication costs. Therefore, the tasks are
combined to so-called clusters that are merged together until no further reduction
of the makespan is possible. In general, there are two different methods. The UNC-
method (Unbounded Number of Clusters) and the BNP-method (Bounded Number
of Processors). In the former method, an unlimited number of processors is assumed

to get a high reduction of the makespan. A post processing step is then necessary

24

to map the clusters onto the available processors. In contrast, in the BNP-method,
the existing target system is directly considered so that no post processing step is
required [84][110].

For an unbounded number of processors, Yang and Gerasoulis [186] present a
cluster-based algorithm. In the so-called DSC-algorithm (Dominant Sequence Clus-
tering), a task is assigned to a cluster when the longest path between an entry task
and the current task is minimized by saving the communication costs. Therefore,
the critical path of the partial schedule (called dominant sequence) is used. If the
task is not on the critical path, it must be proved whether the assignment leads
to a worsening of tasks with a higher priority. Is it not possible to assign a task
to an existing cluster, the task is assigned to a new cluster. Gerasoulis and Yang
present in a further work a comparison of clustering heuristics for scheduling DAGs
on multiprocessors [68].

Cirou and Jeannot [46] propose an approach for heterogeneous systems. They
present a multi-step scheduling algorithm called triplet. Initially, the tasks are
combined to clusters. Then, platforms with same characteristics are grouped to
workstation clusters. Finally, the clusters are mapped to the workstation clusters.

In duplication-based scheduling, so-called TDB (Task Duplication-Based), also a
reduction of the communication costs is desired. In contrast to the cluster-based
scheduling, the tasks are replicated. If dependent tasks are on the same PU, no
communication costs are needed. If a task has several descendants, only duplicates
can avoid communication costs (and serialization). Some algorithms replicate only
direct predecessor tasks, others in turn all predecessors. The replicated tasks (dupli-
cates) are then mapped onto different PUs. If a successor task is placed on the same
PU like the duplicate, the communication costs between them can be neglected [44].

Papadimitriou and Yannakakis [138| present a duplication-based algorithm called
PY-algorithm (Papadimitriou Yannakakis). The tasks are assigned to PUs by using
a so-called e-value that represents the earliest start time of a task. If a task can only
be started after the e-value because of dependencies, the predecessors are duplicated
and placed onto the same PU like the considered task. Thus, the communication
costs are eliminated and the makespan is reduced.

Bozdag et al. [33] present a task duplication-based algorithm called DUPS (Dup-
lication-based scheduling Using Partial Schedules). The algorithm consists of two
phases: one for minimizing the schedule length by using partial schedules and one
for reducing the number of required processors by merging and eliminating the

schedules. Duplicates are created in the first phase to construct partial schedules.

25

In [32]|, Bozdag et al. present a further duplication-based algorithm called DBUS
(Duplication-based Bottom-Up Scheduling) for heterogeneous environments.

In [109], Kwok presents a task duplication-based approach for heterogeneous clus-
ters. To minimize the makespan, tasks on the critical path are replicated onto faster
machines.

Ahmad et al. [4] present a comparison of different algorithms for task graphs on
parallel processors. Next to task duplication-based algorithms, list- and cluster-
based algorithms are considered.

Kaur and Kaur [103], and Gupta et al. [75] present a review of duplication-based
scheduling algorithms.

Often a combination of list-, duplication- and cluster-based methods is used. Kru-
atrachue et al. [108] and Bansal et al. [19] present combinations of duplication- and

list-based scheduling algorithms.

2.3.2 Performance and Cost Metrics

In order to make a statement about the quality of a scheduling algorithm, various
factors can be considered. Depending on the application field and the resulting type
of scheduling, different factors are important, e.g. the performance, scalability, cost
or throughput. Several metrics are proposed in the literature like in [36], [60], [90],
[102] and [107]| to validate the quality and thus to make a scheduling algorithm
comparable against existing ones. In the following, necessary performance and cost

metrics for this work are described.

Makespan The makespan or schedule length of a schedule is the overall completion
time CT of a schedule. It describes the length between the starting point of an
execution and the ending point. In a parallel program, where the tasks of the
program are executed on different PUs, the makespan is the length between the
earliest starting task of the schedule execution and the latest ending task over all

PUs [39]. The makespan can be described by equation 2.1, where i is the task index:
Makespan = max(CT;), (2.1)

Speedup A common performance metric for scheduling algorithms is the speedup.
Important for the speedup is the schedule length (i.e. the makespan of a schedule).

The speedup of a parallel program and thus of a schedule is then the ratio between

26

the sequential schedule length S L., and the parallel schedule length SL,, [73][184].
It can be described by equation 2.2:

SLgeq

—_— 2.2
SLpara ()

Speedup =

In the literature, different types of speedups like absolute or relative speedup are
described, depending on different assumptions to the sequential schedule length. In

this work, SLg, is defined as the sum of all task execution times.

Efficiency The efficiency of a scheduling algorithm is defined by the ratio between
the speedup and the number of PUs. Thus, it represents the average usage rate of

all PUs of the system during the execution of a schedule [73].

Speedup

Efficiency = ————
#PUs

(2.3)
Scheduling Time A common cost metric for scheduling is the scheduling time. It

represents the running time of an algorithm to find a resulting schedule [174].

2.4 Fault Tolerance

4A fault is the cause of an error. Examples are a transistor defect or an incorrect
line of program code. An error is the visible effect of a fault like a wrong behavior
of an application due to the incorrect code line. Faults can occur at any time in
a computer system. Some faults have a major effect on the behavior of a system,
e.g. a damaged or overheated processor leads to a failure, while others affect the
system only marginally, e.g. a wrong presentation of some results in an application
[51]]167].

Therefore, it is important to classify faults to handle them appropriately [52]. In
addition, the application field of a system is important for the handling of a fault.
For example in a medical or industrial field a faulty system or at least a faulty
component (in hardware or software) leads to high costs in sense of time, money
up to life-critical situations. In such application fields, a correct system behavior is

mandatory.

4The organization of this section is partially based on the presentation in my German diploma
thesis [44].

27

In general, there exist two approaches for the handling of faults, the fault avoid-
ance and the fault tolerance. The fault avoidance is typically used in the planning
and development phase of hardware and software in order to avoid faults directly in
advance, e.g. with additional tests and systematic designs. In contrast, fault toler-
ance is used to detect and treat faults after they have occurred, so that the system
still functions correctly (despite faults) [51][52][167].

In parallel systems with a large number of PUs like in grids or manycores, where
a failure of a PU can occur during the execution of a scheduled parallel program,
fault tolerance is very important. In such systems, unexpected faults often occur
during operation, e.g. failures due to hardware, software and connection faults or
due to the shutdown of PUs by their owner (in a grid), so that a fault avoidance
is impossible in advance. In addition, the probability of a fault increases with the
number of PUs [51]. Therefore, several approaches for fault-tolerant scheduling are
presented in the literature.

Whenever fault tolerance is used, some kind of redundancy is necessary, e.g. by in-
cluding additional components in hard- or software, by supporting special functions,
or by using extra time for fault-tolerant techniques. Basically, redundancy describes
the existence of additional resources that are dispensable for a correct functioning
of a system in general, i.e. in a fault-free case [30|[52]. To develop and evaluate
fault-tolerant techniques, failure models are often used. A failure model describes
the assumptions about the system in use and the tolerable faults that should be
supported by the system [66].

In this section, firstly a classification of faults is given and different failure models
are explained. Secondly, fault-tolerant scheduling and corresponding approaches are

presented. Finally, difficulties in real implementations by using MPI are described.

2.4.1 Classification of Faults

There exist different faults that can occur in a computer system. Faults are usually
categorized into several classes according to their properties. These classes can be
used to develop fault-tolerant techniques for a group of faults. In the following, the
most common categories are described. A first classification can be done according

to the cause of a fault into design, production and operation faults |51][52]:

e Design Fault:
A design fault is caused in the planning and designing phase of a system

by a wrong specification, documentation or mistakes in the implementation.

28

For example an incorrect algorithm or architectural specifications that do not

match the requirements for the application field of a system.

e Production Fault:
Faults that are caused in the manufacturing of a system are called production
faults. For example inaccuracies in the fabrication process of hardware like
processor chips or faults from the replication process of software, when copying

an application to another medium.

e Operation Fault:
Operation faults are caused during the runtime of a system, i.e. the system
was initially faultless. For example wear-out and aging failures, mistakes in

the use of programs or a wrong handling in the maintenance.
Faults can also be subdivided into software and hardware faults [51]:

e Hardware Fault:
A hardware fault is caused by physical defects in the system or component.
For example broken pins of a processor, defect memory cells in a RAM module,

or short-circuits.

e Software Fault:
Faults that are caused in the software are related to this category. The software
can be for example a standalone application, an operating system or drivers
for hardware components. Most software faults are caused by implementation

mistakes in the design phase or due to incorrect updates.

Another differentiation of faults is based on the duration of a fault into temporary

(transient and intermittent) or permanent faults [51]:

e Temporary Fault:
Faults that occur for a short time during the life cycle of a hard- or software
are called temporary faults. If a fault occurs only once it is also called a
transient fault. These faults typically arise due to external influences like
cosmic rays or electrical power drops. If a fault occurs periodically, it is also
called intermittent fault. These faults are usually based on implementation

mistakes or unexpected operation conditions.

e Permanent Fault:
A permanent fault exists until the state of the corresponding hard- or software

is changed by restarting, changing or replacing the component.

29

2.4.2 Failure Models

In the literature, several failure models are presented, e.g. in [51], [66], [166] and

[176]. Therefore, only the most common are described in the following [66]:

e Fail-stop Model:
In this model, a failure of a PU can occur at any time. The information about
a failure is distributed to the other PUs automatically, as the faulty PU cannot

send or receive messages anymore. A recovery of the faulty PU is impossible.

e Crash Model:
The crash model is similar to the fail-stop model. But the information about
a failure is not distributed automatically. The remaining PUs only get the
information about a failure, when they do not receive any response of the

faulty PU to a request within a time frame.

e Crash Recovery Model:
In contrast to the crash model, a faulty PU can be recovered in this model

after a while.

2.4.3 Fault-tolerant Scheduling

In fault-tolerant scheduling, the most common software techniques are checkpointing
and replication. Checkpointing is a backward error recovery technique. With this
technique the system state is saved periodically in a checkpoint. When a fault
occurs, the faulty system state is replaced by the last fault-free checkpoint and the
execution is continued [148].

In replication, the fault tolerance is achieved by copying parts of an application
onto other PUs. In case of a failure of one PU, either the original or the copy
finishes. The execution of the application can continue. This technique can be
subdivided into active and passive replication. In active replication, multiple copies
of a program part are mapped onto different PUs and executed in parallel. In
this case, a fixed number of failures is tolerated. Passive replication uses only one
backup copy per program part. The backup copy is not executed in parallel with
the original. Instead, it only runs if the original fails [16].

If only one copy is used in general, replication is also called duplication and the

copy of each program part is called a duplicate. This scheduling approach is then

30

related to task duplication-based scheduling (see Sect. 2.3.1). Sometimes hybrid
techniques that combine checkpointing and replication are used.

As a fault or failure can only be survived or not, often the (performance) over-
head in both the fault-free and the fault case are used to evaluate the fault-tolerant
scheduling approaches. The overhead is the difference between the makespan with-
out any fault-tolerant aspects m and the makespan with fault tolerance included
my; in percent and can be expressed by [44][53]:

myeg —m

Overhead = - 100. (2.4)

m

In this equation, no difference between the fault-free and fault case is considered.

Therefore, the relation of the overhead to the corresponding case is always specified
in this thesis, if it is not clear in the context.

Fault-tolerant scheduling has been studied over decades, thus numerous approaches

exist in the literature for both checkpointing and replication. Therefore, only some

examples are presented in the following:

Approaches using Checkpointing Poolaet al. [141] present a fault-tolerant schedul-
ing approach for workflows in cloud computing. They minimize the execution costs
by using different cloud instances for a workflow and tolerate failures by including
checkpoints.

In [17], Balpande and Shrawankar present a fault-tolerant job scheduling approach
for computational grids. They propose two different checkpointing schemes. The
so-called ABSC' (Algorithm Based on System Checkpointing) scheme is based on a
genetic algorithm and used for non-intensive applications. In the so-called ABAC
(Algorithm Based on Application Checkpointing) scheme a computational intensive
application is extended to make and store checkpoints.

For computational workflows, Aupy et al. [13] present another approach. They
propose a polynomial-time optimal algorithm for fork DAGs. A fork DAG is a task
graph with one entry task, n exit tasks and n edges from the entry task to each
exit task. Their goal is to minimize the expected execution time for a workflow by
making decisions about the execution order of tasks and when to checkpoint.

Prashar et al. [145] present a fault-tolerant approach in grid computing by combin-
ing checkpointing with an ACO algorithm. The ACO algorithm is used to balance
the load over nodes in a grid. Checkpointing is considered to handle faults of re-

sources.

31

For computational grids, Babu and Rao [14] present an automated checkpointing
strategy. They assume a heterogeneous system and independent jobs to be sched-
uled. MPI and BLCR (Berkeley Lab Checkpoint/Restart), a package to support
interactive checkpointing on MPI applications, is used.

In [163], Singh presents a fault-tolerant scheduling algorithm for grids with check-
pointing. He considers the failure rate and the computational capacity of resources
to minimize the makespan and cost of a schedule.

Nazir et al. [132] present an adaptive checkpointing strategy for economy based
grids. They propose a fault index of grid resources that is dynamically updated
based on successful or unsuccessful execution of tasks. The fault index is used for
the intensity of checkpointing, i.e. the checkpoint interval.

Further approaches using checkpointing can be found e.g. in [65], [146] or [149].

Approaches using Replication Litke et al. [117] present an efficient static fault-
tolerant task replication approach for mobile grid environments. They consider
multiple replications per task depending on the probability of a failure. The goal is
to maximize the utilization of the grid resources.

For multiprocessors, Jun et al. [98] present another fault-tolerant approach. They
propose two different scheduling methods for both active and passive replication.
The first method is based on an ILP formulation to find optimal schedules, the
second one is a heuristic algorithm that can achieve close to optimal solutions.

In [177], Tsuchiya et al. present a dynamic fault-tolerant replication-based schedul-
ing technique for real-time multiprocessors. They assume aperiodic tasks and con-
sider one copy per task. The copy is divided into two parts: one part that can be
executed simultaneously to the original task (so-called redundant part) and another
part (so-called backup part) that runs after the original task. Thus, the backup part
has only to be executed when the original task fails.

Ahn et al. [5] present a fault-tolerant scheduling approach for hard real-time sys-
tems. They use passive replication and also consider aperiodic tasks. In contrast
to Tsuchiya et al., an overlapping of an original task and a copy of another task is
allowed in their dynamic scheduling heuristic.

In [1], Abawajy presents a dynamic fault-tolerant scheduling approach for grid
systems called DFTS (Distributed Fault-Tolerant Scheduling). He assumes a fail-
stop model and a certain number of replicas given by the user.

In [183], Wensley et al. present a fault-tolerant approach for aircraft control called

SIFT (Software Implemented Fault Tolerance). They use triplication of tasks to

32

tolerate a single failure of a processing unit or bus. Iterative tasks are assumed and
redundantly executed. Consequently, the results of each iteration are initially voted
before they are used.

Poola et al. [142] present a fault-tolerant approach for workflows in cloud envi-
ronments. They propose a just-in-time scheduling heuristic that uses replication to
utilize different pricing models offered by clouds.

Further investigations on fault-tolerant scheduling with replication can be found
in [25], [31] and [182].

Combinations Nandagopal and Uthariaraj [130| present a combined fault-tolerant
approach for computational grids. They use checkpointing to tolerate failures and
replication to increase the availability of checkpoints.

Nazir and Khan [131] present a fault-tolerant job scheduling approach for compu-
tational grids. They consider checkpointing and replication. In their approach the
intensity of both is dependent on the fault occurrence history of a resource.

In [43], Chtepen et al. present an efficient fault-tolerant approach that combines
checkpointing with replication. They propose to dynamically switch between both
techniques according to the runtime information and system load. Next to their
proposed algorithm several checkpointing and replication approaches are presented
that dynamically adapt the checkpointing interval and the number of replicas.

Further combined fault-tolerant approaches can be found in [15] and [187].

2.4.4 Fault Tolerance in MPI

We consider a fault-tolerant MPI-application that can survive a failure. In the
basic version, MPI does not support fault tolerance. When an MPI-process fails for
some reason, the typical behavior of MPI is to abort the whole application, i.e. all
remaining MPI-processes. This behavior can be changed by using an additional flag
(-gmca orte_abort_on _non_zero_status 0), when starting the MPI-application
with mpirun *. The execution of an MPI-application is then continued. But in this
case, no further collective functions can be used, as the standard intra-communicator
is MPI COMM _ WORLD, that includes all started MPI-processes and is static
during the runtime. In every MPI-application the parallel part must be started
and ended with the collective functions MPI_Init() and MPI_finalize() that are
related to the standard intra-communicator. If an MPI-process fails within this

part, the MPI_finalize() function leads to an endless loop, because the failed

33

MPI-process did not reach this function. One option to avoid the collective function
in the end of the MPI-application is to use an explicit call of MPI_Abort (Comm)
for each remaining process. But the typical behavior of MPI is to abort the whole
MPI-application when the first MPI_Abort (Comm) is executed. Also in this case, the
application terminates with an error message. Thus, there exist several difficulties
why MPI in its standard version is unsuitable to execute fault-tolerant applications.

Fagg and Dongarra [58] present an approach to control the behavior of MPI within
an application. The so-called FT-MPI (Fault-Tolerant MPI) is an extension of MPI,
that supports different failure modes for checkpointing and replication techniques
by including semantics into MPI. It is used in combination with a core library
called HARNESS (Heterogeneous Adaptive Reconfigurable Networked SyStem), to
build necessary services for FT-MPI. The main feature of FT-MPI is to handle
failures by modifying the standard communicator of MPI. Different options are
given, like shrinking the communicator size and reordering the ranking of MPI-
processes or to fill-up the MPI-application with new MPI-processes and to rebuild
the communicator.

Bland [28] presents another approach called ULFM-MPI (User Level Failure Mit-
igation MPI). It is based on Open MPI and also includes several semantics and
constructs, to control the behavior of MPI during runtime. In contrast to FT-MPI,
an additional runtime system like HARNESS is unnecessary and the constructs al-
low a more detailed behavior control. ULFM-MPI can be interpreted as a successor
variant of F'T-MPI, that is built by a working group of the MPI forum with the goal
to be included in the MPI standards in the future.

2.5 Energy Efficiency

In computer systems like manycores or grids that are typically used for computa-
tional intensive applications, the processor (core) is one of the most power consuming
components. Several hardware and software mechanisms have been integrated into
the systems to reduce the power consumption and therefore the energy consump-
tion of those components, and finally for the entire system. Today, most processors
support different frequency and voltage levels as well as multiple sleep states. Oper-
ating systems must provide appropriate software energy management functions, to
use such hardware features of a processor. A common standard for these functions is
given by the ACPI (Advanced Configuration and Power Interface) [82]. In addition,

the operating system is typically responsible for adequately utilizing these functions.

34

Especially in grids and manycores, where the PUs are controlled by separate
operating systems, an efficient utilization of the energy management functions is
impossible because the operating systems are not aware about the parallel applica-
tion to be executed. In such a case, the scheduler or the underlying runtime system
must support corresponding features. Therefore, numerous scheduling approaches
are proposed in the literature, which consider energy efficiency.

Typically, energy efficiency can either be described as using less energy to provide
the same amount of service or as using the same amount of energy to provide an
increased service [35][89]. Both definitions are correct depending on the perspective.
In this thesis, the first definition is considered and corresponding energy-efficient
scheduling heuristics and strategies are presented in Chap. 4.

To provide energy-efficient scheduling, i.e. reducing the energy consumption for a
task or schedule, a prediction of the energy consumption is necessary. Therefore, an
appropriate power model for the system in use must be defined.

In the remainder of this section, firstly energy consumption is defined and power
consumption explained. Secondly, typical aspects of modeling the power consump-
tion of a processor (core) are described. Then, energy-efficient scheduling and cor-
responding approaches are presented. Finally, limitations and issues in real systems

are described.

2.5.1 Energy Consumption

The energy consumption E for a certain time span ¢ = [t1; ts] is the power consump-

tion P integrated over time and is expressed by:

o / ® Pyt (2.5)
t
If P is constant over time, then this reduces to £ = P - (t — t1). The energy is
typically measured in J (Joule), which corresponds to Ws (Watt-second).
The power consumption (measured in W (Watt)) of a processor (core) is subdi-
vided into a static part Py that is frequency independent and a dynamic part
Piynamic; which depends on both the frequency and voltage. The total power con-

sumption is then the sum of the static and dynamic power consumption:

P = Pstatic + denamic (26)

35

A processor consists of several billion transistors that are combined to gates and
circuits to form different function units. A certain number of transistors must be
switched in a clock cycle depending on the instruction to be executed and thus
the function units in use. Additionally, the clock cycle time is dependent on the
frequency. As the dynamic part mainly results from switching these transistors and

thus from charging and discharging the load capacitance, it is expressed by:
denamic = ACV2f> (27)

where A is the percentage of active gates, C' is the complete load capacitance of
the chip, V' is the supplied voltage and f is the frequency [67|. The influence of
temperature is caused by the dynamic power, i.e. by scaling frequency and voltage.

The static part results from leakage currents, i.e. mainly from subthreshold leakage
and gate-oxide leakage that exist due to shrinking the transistor size and integrating
an increasing number of transistors on a single chip. In Fig 2.5 both leakage currents

are demonstrated with arrows within a transistor.

B Subthreshold leackage
B Gate-oxid leackage

Source Gte Drain

Bulk

Figure 2.5: Leackage Currents in a Transistor [154].

A transistor has a defined threshold voltage, above which it is turned on. The
subthreshold leakage is a current flowing from drain to source when the gate voltage
is below the threshold voltage [106|[154]. The subthreshold leakage is dependent on
the temperature. As the temperature increases with an increased dynamic power, it
also influences the subthreshold leakage. In contrast, the gate-oxide leakage results
from the decreasing thickness of the isolator between gate and substrate (bulk),

where electrons can (with a small probability) tunneling through the isolator [111].

36

2.5.2 Modeling

To predict the energy consumption for a task and finally for an entire schedule, an
appropriate power model of the processor (core) is mandatory or at least a table
with real frequency/power consumption pairs. Basically, a model is a simplified
representation of the reality. The complexity of a model increases significantly with
its accuracy. As the power consumption of a processor depends on several factors,
like the temperature, instruction mix, usage rate and technology of the processor,
there exist numerous approaches in the literature to model the power consumption
of a processor with varying complexities and accuracies, like in [23], [45], [71] or
[170]. In general, without considering a specific processor, typically a quadratic
or cubic frequency function is assumed, as the frequency and voltage are loosely
linearly correlated®. Therefore, the power consumption for a given frequency f is
expressed by:

P(fy=c+f*:2<a<3, (2.8)

where ¢ is a constant for the static power consumption and f¢ is for the dynamic
power consumption [7]. For a certain task workload w;, the runtime r; of a task at
a given frequency f; results in:
Wi
ri = 7 (2.9)
The energy consumption for an entire schedule (without considering the energy
consumption for idle times) is the sum of the energy consumptions for all tasks and

is expressed by:

E:ZEi:Zri~P(fi). (2.10)

In such a generalized model, usually a continuous frequency scaling is assumed.
While a processor typically supports only several discrete frequencies, each mod-
eled frequency f can be "simulated" by a linear interpolation as demonstrated by
Eitschberger and Keller [55]. A task i then runs for a fraction g of the runtime 7;
with a higher supported frequency fp;,n and for the remaining time 1 — 8 with a
lower supported frequency fioy, so that f = - fuign + (1 —) - fiow. In Fig. 2.6,
an example is demonstrated, where a task runs for five time units at a modeled fre-
quency of 1.8 GHz (GigaHertz) and the corresponding distribution of the runtime
with discrete frequencies 1 GHz and 2 GHz.

5For a given voltage there is a maximum frequency and for a desired frequency there is a minimum
voltage required.

37

[T
0 1 2 3 4 5 Time (t)

Figure 2.6: Task Runtime with a Modeled Continuous Frequency (Top) and with
Discrete Frequencies (Bottom).

The energy consumption for a task ¢ with runtime r; at a simulated frequency f;

can then be expressed by:

E(fiﬂ“i) = E(fzow,ﬁ : T’i) + E(fhigh; (1 - 5) 7"2) (2-11)

The difference in energy consumption for continuous and discrete frequency scal-
ing is very small, so that it often is neglected. In Fig. 2.7, the energy curves for

continuous (modeled) and discrete (simulated) frequencies for one second are shown.

[Modeled frequency = = = /
Simulated frequency y

e 1 ! ! 1 ! |

04 06 038 1 1.2 14 16 1.8 2
Frequency (GHz)

Energy (J)
S NS I e e
|

Figure 2.7: Energy Consumption for Continuous and Discrete Frequencies.

In this example a frequency range between 0.5 and 2 GHz is used with discrete
frequencies of 0.5, 0.8, 1.1, 1.4, 1.7 and 2.0 GHz. As power model P(f) = f3 is
assumed. Between each discrete frequency pair ((f;, E(f;), (fiz1, E(fis1)), the energy

for simulated frequencies results in a straight line, that connects both frequency

38

points. Idle times are often neglected, as modern processors typically supports sleep
states with a very low power consumption (compared to the power consumption of
a task).

2.5.3 Energy-efficient Scheduling

The information about the power consumption of a processor (core) at a certain fre-
quency, either given by a power model or by a table of frequencies with corresponding
real power values, can be included into the scheduling process to optimize the energy
consumption for a task and finally for an entire schedule. Basically DVFS and DPM
are used to construct an energy-efficient schedule. While DVFS is used to scale the
frequency and voltage of a processor during runtime, DPM is usually considered
for longer idle times to switch a processor into a sleep state. To further reduce the
energy consumption, combinations of both techniques are used in scheduling. Next
to the use of these techniques also approaches exist that reduce the energy con-
sumption by shutting down processors completely and scheduling the tasks onto the
remaining processors. As there exist a huge number of energy-efficient approaches

in the literature, only exemplary representatives are presented in the following:

Approaches using DPM Lu et al. [121] present an online low-power task schedul-
ing approach for multiple devices that uses DPM. They focus on clustering idle
periods to increase the time for shutdowns and to reduce state-transition delays.
They consider the difference in energy for idle periods, when switching to a sleep
state mode or when staying in an active mode.

In [122], Ma et al. present an energy-efficient scheduling algorithm for tasks onto
a cluster system without DVFS functionality. They propose a combination of task
clustering and task duplication to reduce the time and energy for communication
and DPM to decrease the static power of processing elements in idle phases. The
power consumption is calculated by using technical parameters of the test system.

Baptiste [20] presents a polynomial time algorithm. He focuses on scheduling unit
tasks, i.e. the processing time for all tasks remains one time unit, and on minimizing
the number of idle periods. He assumes for each task a release date and a deadline.

Rizvandi and Zomaya [153] present a survey of DPM and DVFS scheduling algo-

rithms for cloud systems as well as Jha [97] for uniprocessor and distributed systems.

39

Approaches using DVFS In [157], Ruan et al. present an energy-efficient schedul-
ing approach called TDVAS® for parallel applications on clusters. They assume
precedence constraints between the tasks and use DVFS to reduce the voltage and
frequency for tasks followed by a gap or directly during idle periods without increas-
ing the makespan. As power model P = C - V?. f is assumed. The voltage and
frequency levels are given by the system parameters of the used test system.

Lee [112] presents another scheduling approach for multicore processors. He con-
siders multiple periodic real-time tasks and assumes situations with more cores than
running tasks. In the proposed scheduling heuristic, tasks are parallelized onto sev-
eral cores, frequencies are scaled down if possible and unused cores are shut down to
minimize the energy consumption. A table of power, frequency and voltage values
is given for a test system and the energy consumption per cycle is calculated by the
power consumption divided by the frequency.

Huang et al. [86] present an energy-efficient mixed-criticality scheduling approach.
They consider DVF'S to speedup critical tasks that do not meet their deadlines and
to slow down tasks in situations, where tasks finish before the deadlines. They use
a cubic power model and assume continuous frequencies.

In [185], Yang et al. present an approximation algorithm for energy-efficient
scheduling on a MP-SoC. They assume homogeneous cores that can either be switch-
ed off or have to operate at the same voltage level. They consider frame-based tasks
that are ready at time 0 and share a common deadline. Their approximation algo-
rithm yield an approximation ratio of 2.371.

For malleable streaming tasks, Kessler et al. [104] present an approach called
crown scheduling. They propose a static combined optimization of resource alloca-
tion, mapping and DVF'S to optimize energy efficiency under throughput constraints
with the help of an ILP. They consider dynamic (crown) rescaling when not all tasks
are data ready. As power model, a cubic frequency function is used. As extension,
Melot et al. [126] present several additional heuristics for crown scheduling.

Mishra et al. [129] present an energy aware scheduling approach for distributed
real-time systems. They consider both static and dynamic energy management.
They assume tasks with precedence constraints and integrate DVFS in already ex-
isting schedules to statically generate energy-efficient schedules. During execution,
they further use DVFS dynamically in case of unexpected execution delays.

Further investigations on energy-efficient scheduling using DVFS can be found
e.g. in [26], [119] or [189].

6A long form of TDVAS is not defined by the authors.

40

Approaches using DPM and DVFS In [41], Chen et al. present an energy op-
timization for real-time MP-SoCs with DVFS and DPM. They assume tasks with
precedence constraints that share a common deadline. They consider both static
and dynamic power consumption and discrete voltage/frequency levels. A mixed
ILP is proposed to find energy optimized schedules when using DVFS and DPM.

He and Miiller [80] present an online energy-efficient scheduling approach for com-
ponent oriented systems. They consider hard real-time based tasks and propose a
simulated annealing based optimization algorithm. In contrast to many other ap-
proaches, they also consider multiple sleep states and switching overhead.

Rong and Pedram [155] present a power-aware scheduling approach for hard
real-time systems. They assume periodic tasks with precedence constraints. They
present an ILP-formulation and propose also a three-step heuristic to minimize the
energy consumption. In a first step the tasks are ordered, then the voltage is as-
signed, and finally a refinement step follows.

In [18], Bambagini et al. present a survey of energy-aware scheduling approaches
for real-time systems. They differentiate between DPM, DFVS, and combined al-
gorithms for uniprocessor and multiprocessor systems and propose a taxonomy of
energy-aware scheduling algorithms.

Zhuravlev et al. [194] present a survey of energy-cognizant scheduling techniques.
Next to DPM and DVFS algorithms, also thermal aware approaches and scheduling
algorithms for heterogeneous systems are considered.

Albers |7] presents energy-efficient algorithms. She considers DVFS and DPM and
presents algorithms for various scheduling goals like minimizing the temperature,
response time, or fulfill deadline constraints. Additionally, she presents approaches

for wireless networks.

Other Approaches For example, Pinel et al. [140] present a two-phase heuristic
for mapping independent tasks onto a distributed system to minimize the makespan.
They consider energy efficiency by proposing to add low power computing nodes to
the distributed system.

In [113], Lenhardt presents approaches to distribute the load in server farms to
save energy. Not only an efficient load level in terms of energy savings without
significant performance losses is presented, but also fluctuations in the load are
considered that can be balanced by switching off some servers or transferring them

to a sleep state mode and re-distributing the load to the remaining servers.

41

Cong and Yuan [47| present an energy-efficient scheduling approach for heteroge-
neous multicore systems. They map programs onto the most appropriate core based

on program phases and use a combination of static analysis and runtime scheduling.

2.5.4 From the Model to the Real World

In real computer systems, several limitations and issues exist in hard- and software
that reduce possibilities to utilize energy-efficient scheduling. Continuous frequency
scaling for example is impossible, as processors only support several discrete fre-
quencies. The ACPI standard recommends up to 16 frequency levels [82]. The
voltage range decreases with a reduced transistor size. Therefore, energy improve-
ments resulting from using DVFS will be getting smaller in the future, as the voltage
is the most significant factor that influences the power consumption. Additionally,
by shrinking the transistor size and integrating further transistors into a single chip,
the heat is getting higher, resulting from switching transistors. This leads to so-
called dark silicon, i.e. not all parts of a processor can be used at the same time.
Therefore, the trend is changing towards processors including different cores, e.g.
low power and high performance cores that are switched off, when they are idle [57].
Depending on the timescale that is assumed for a schedule, also the switching times
between different frequencies and voltages are becoming important, like for stream-
ing applications as demonstrated by Eitschberger and Keller [55|. Additionally,
in some operating systems the accessibility to control DVFS options is restricted.
Linux-based systems typically support different governors that can be set to change
the frequency scaling behavior or to make DVFS accessible to applications that are
built on top of the operating system. A corresponding API is the so-called CPUFreq
(Central Processing Unit Frequency) [88]. In contrast, Windows-based systems do
not allow any access to DVFS by other applications or by a user. Also the kind of
processor is important for energy-efficient scheduling. For example the voltage for
most processors can only be scaled for all cores together within the processor, but
not separately, as the voltage regulator for the whole processor is typically placed on
the mainboard. One type of processors, where a separate voltage scaling per core is
possible, are the Haswell-based server processors from Intel [76]. In this architecture
the voltage regulators for each core are directly included on the processor chip.
Modern processors support a so-called turbo frequency that is significantly higher
than the other frequency levels. The turbo frequency is influenced by several factors,

like the number of active cores or the temperature of the processor and therefore it

42

varies over time. It can only be used for a certain time span because of temperature
reasons. Otherwise, throttling effects can occur, i.e. switching between a lower
frequency and a turbo frequency during execution to reduce the temperature of the

processor [82].

2.5.5 Measuring Power Consumption

The classical way to measure the power consumption of a processor is to use an
external multimeter. Next to this, several modern processors directly support mea-
surement features that can be used to evaluate the power consumption. For example
the RAPL (Running Average Power Limit) interface in Intels’ processors [91] that
was introduced in the Sandy-bridge architecture. The RAPL interface is basically
used to set and control power limitations of a processor with the help of performance
counters and MSRs (Model-Specific Registers). Some of these performance counters
provide information about the power and energy consumption of different processor
components by using a software power model. In Tab. 2.1 all components are listed

that are (partly) supported by modern Intel processors. The MSRs are updated

Table 2.1: RAPL Domains and Corresponding Processor Components.

Domain Component

Package (PKG) Complete processor chip
PowerPlane0 (PPO) All processor cores

PowerPlanel (PP1) Processor uncore, mainly the GPU
Dynamic RAM (DRAM) | Memory controller

every millisecond and the accuracy of the power and energy information is high in
comparison to real measurements, like presented in 76|, [77] and [190].

To access the MSRs with the power and energy information within a program,
the PAPI (Performance Application Programming Interface)” can be used [178]. As
the MSRs are only accessibly in the kernel level, the user must either have root
permissions or the executable. In combination with MPI only the latter one is

possible, as MPI cannot be used as root-user.

"PAPI is a project of the University of Tennessee to design, standardize, and implement an API
to access hardware performance counters.

43

44

3 Trade-off between Performance,
Fault Tolerance and Energy

Consumption

In general, a trade-off describes a balancing of factors that are unattainable simul-
taneously. Improving one of these leads to a worsening of the others. The behavior
is similar related to a combination of the three optimization criteria: performance,
fault tolerance, and energy consumption. A trade-off already exists if two of these
three are considered. While there are several approaches in the literature for these
two-dimensional optimizations, a combination of all three criteria, especially for du-
plication based task graph scheduling, has not been considered yet. Sect. 3.1 firstly
describes the trade-offs for all two-dimensional combinations. Then, for each combi-
nation exemplary related existing approaches are presented. In Sect. 3.2 the indirect
trade-off between the fault-free case and the fault case is described. In Sect. 3.3 the
three-dimensional optimization problem is explained. Finally, in Sect. 3.4 upper and

lower bounds for the three criteria are given.

3.1 Two-dimensional Optimization

A common practice for two-dimensional optimizations with a trade-off between the
optimization criteria is to fix one criterion, while the other is optimized. For schedul-
ing in general this means that either a fixed deadline (or makespan) or a fixed energy

budget is assumed.

3.1.1 Performance vs. Fault Tolerance

Scheduling goals either focus on minimizing the makespan and thus maximizing
the performance of a schedule, or on minimizing the energy consumption for the

execution of a schedule (see Sect. 2.3). Here, the first approach is assumed. In

45

contrast, a main challenge of fault tolerance, next to dealing with a failure, is the
minimization of the performance overhead both in a fault-free case and in case of a
failure (see Sect. 2.4). As long as the number of available PUs is at least twice as
high as the number of required PUs for a performance optimal solution, the whole
schedule can be copied and run simultaneously on the remaining half of the PUs. In
this case, if only considering the performance and the fault tolerance, a trade-off does
not exist and finding an optimal solution is trivial. Fig. 3.1a illustrates an example,
where a schedule is copied onto unused PUs without prolonging the makespan. The
original tasks are mapped onto PUs 0 and 1, the duplicates are placed onto PUs 2
and 3.

) Makespan
a

PU 3 f Duplicate task

i [Original task
PU 2 '
PU O 6
T ,|
Time (t)
Resulting overhead

b)
) (\

Old makespan New makespan

PU 1 B | 4 |
PU 0 El K
:

I Time (t)

Figure 3.1: Fault-tolerant Schedule: a) Using Free PUs for the Placement of Dupli-
cates, b) No Free PUs are Available.

When the number of available PUs is lower, the problem becomes more complex
and a trade-off between performance and fault tolerance must be made. However,
the overhead of duplication-based scheduling then is determined by the duplicates
that have to be included into the schedule. One reason is the additional execution
time of the duplicates. Secondly, the dependencies between all tasks (original tasks
and duplicates) has to be considered because each task requires the results of its

predecessors, independently of whether the tasks are original tasks or duplicates.

Fig. 3.1b illustrates the fault-tolerant schedule when free PUs are unavailable. Now,
the makespan is increased by placing the duplicates directly between the original
tasks resulting in a performance overhead. Usually, the focus lies on the fault-
free case, because in most environments a failure occurs infrequently. Therefore,
minimizing the performance overhead in this case is desired.

Fechner et al. [59] present a fault-tolerant duplication-based scheduling approach
for grids that guarantees no overhead in a fault-free case. They assume to have an
already existing schedule (and task graph) and extend this schedule by including
a duplicate for each original task. They focus on homogeneous PUs and assume a
fail-stop model. To reduce the performance overhead of the schedule, an original
task sends a commit message to its corresponding duplicate after it has finished so
that the duplicate can be aborted.

Hashimoto et al. [79] present a fault-tolerant duplication-based scheduling algo-
rithm for multiprocessor systems. They assume to have homogeneous processing
elements and a fail-stop model. In their work, a single processor failure is consid-
ered. The algorithm consists of two phases, one for the partitioning of the parallel
program into subsets of tasks, the other for duplicating and scheduling the tasks in
the subset. The duplication is done in two steps: In the first step, the tasks are
duplicated to minimize the communication delays and thus to increase the perfor-
mance. To reach the fault tolerance, a second step is used to duplicate tasks that
are not duplicated in the first step.

In [83], Hongxia and Xin present a fault-tolerant scheduling algorithm with dy-
namic replication, called DRFT-algorithm (Dynamic Replication of Fault-Tolerant
scheduling). They combine an active and passive mode of backup tasks to reduce the
performance overhead in case of a failure. For each task a backup level is calculated
to decide how long the active and passive backups should be.

Jayadivya et al. [95] present a fault-tolerant workflow scheduling approach for
Cloud Computing, called FTWS (Fault-Tolerant Workflow Scheduling). They as-
sume to have a predefined deadline, within which the schedule must be completed.
To get a good performance while tolerating failures, a combination of replication
and resubmission of tasks is used. Therefore, a heuristic metric is calculated to find
the trade-off between replication and resubmission.

[zosimov et al. [93] present an algorithm that handles the transparency/perfor-
mance trade-offs of fault-tolerant embedded systems. They focus on transient faults
in safety-critical systems. The transparency requirements are handled at the ap-

plication level and give the designer the opportunity to trade-off between memory

47

requirements and debuggability and performance. It reduces the overhead due to
fault tolerance.

In [10], Anglano and Canonico extend a knowledge-free scheduler called WQR
(WorkQueue with Replication) scheduler that does not base its decisions on the
status of resources or characteristics of applications. They focus on bag-of-tasks
grid applications and try to maximize the performance by using task replication.
They consider heterogeneous systems and let the replicated tasks run on processing
units, whenever they are in idle mode. In order to achieve fault-tolerance and good
application performance, they use automatic restarting of tasks and checkpointing
in their fault-tolerant extension of WQR, so-called WQR-FT (Fault-Tolerant).

Further investigations on performance and fault-tolerance in scheduling can be
found e.g. in [3], [24] and [169].

3.1.2 Performance vs. Energy Consumption

The performance of a schedule is dependent on the mapping of the tasks. The
more an application can be parallelized the better is the performance. Addition-
ally modern processors support several frequencies at which a processor can run.
Thus, the tasks should be accelerated as much as possible, i.e. use the highest sup-
ported frequency of a processor to achieve the highest performance. As described in
Sect. 2.5, the dynamic power consumption of a processor (core) is usually modeled
by a quadratic or cubic frequency function. From the perspective of energy consump-
tion a low frequency typically leads to better results than a high frequency. However,
this is highly dependent on the processor type, because in real systems there are
several other factors that influence the power consumption of a processor and thus
the energy consumption of a schedule (e.g. the static power or the idle power etc.)
In Fig. 3.2 an example schedule is given (a) and the resulting performance overhead
is shown when the frequency is scaled down to save energy (b).

Pruhs et al. present in [147] an approximation-algorithm to optimize the perfor-
mance of a schedule by scaling the processor frequencies, when a certain energy
budget is given. They consider continuous frequencies and tasks with precedence
constraints. As power model a cubic function f3 is used. They show that with
these assumptions the aggregate powers of the processors are constant, i.e. the sum
of the processors’ power consumptions is constant over time in any locally optimal
schedule. However, to find an optimized solution the problem can be restricted to

schedules with those properties (so called constant power schedules).

48

a) Makespan
' [Original task

PU1

PUO

Time (t)

Resulting overhead

A
[|

Old makespan New makespan

PU1
PUO

Time (t)

Figure 3.2: Example Schedule: a) Running at a High Frequency (e.g. 2 GHz), b)
Reducing Energy Consumption by Scaling Down the Frequencies (e.g.
to 1 GHz).

In [105], Kianzad et al. present a framework, called CASPER (Combined As-
signment, Scheduling, and PowER management), that uses a genetic algorithm to
find an optimized schedule. They consider both homogeneous and heterogeneous
systems and use frequency scaling. The focus in their presented work lies on the
integration of the scheduling and scaling steps.

Singh and Auluck [162]| present an integrated DVFS and duplication-based ap-
proach for optimizing power and performance in heterogeneous multiprocessors.
They use a combination of DVFS i.e. let the tasks run on low voltages and fre-
quencies and duplicating tasks on multiple processors to reduce the communication
delay between the tasks. A Mixed Integer Programming (MIP) formulation is given
to get a better power consumption and performance at the same time. They show
that their approach leads to significant improvements for both the processor power
and the total power, i.e. the processor power and the communication.

Ma et al. [123] present an algorithm, called EOTD (Energy Optimization schedul-
ing for Task Dependent graph) that uses task clustering to reduce both communica-
tion time and energy consumption. DVS is considered to decrease dynamic power of
processing elements without violating a user predefined deadline. Also static power

is reduced by dynamic power management and binary search techniques.

49

In [180], Wang et al. discuss the relationship between energy consumption and
performance in clusters with DVFS. They propose scheduling heuristics to minimize
the energy consumption of a schedule without prolonging the makespan. They
reduce the energy consumption by using the slack time for non-critical tasks, to
slowdown the tasks by scaling down the frequencies. Additionally, they consider
energy-performance trade-off scheduling by increasing the makespan of a schedule
within an affordable limit to reduce the energy consumption.

Li [115] presents a performance analysis of power-aware task scheduling algo-
rithms and shows that on a multiprocessor computer, the problem of minimizing
the schedule length with energy constraint and the vice versa problem, minimizing
energy consumption with schedule length constraint are equivalent to the sum of
powers problem. He analyses the performance of list scheduling and equal-speed
algorithms by comparing the performance of the algorithms with optimal solutions
analytically.

Aupy et al. [12] present a survey of different energy-efficient approaches. They
describe models for data centers and energy models next to a case study about task
graph scheduling and replica placements.

Further investigations on performance and energy consumption in scheduling can

be found e.g. in [99], [128] and [159].

3.1.3 Fault Tolerance vs. Energy Consumption

In any case where fault tolerance is warranted, some kind of redundancy is necessary
(see Sect. 2.4). In duplication-based scheduling the redundancy is used in the form
of task copies, so-called Ds (Duplicates). A D can only be started, when it has
received all results from its predecessors and when no other task is running on the
corresponding PU. We assume that a D can be aborted when the corresponding
original task has finished correctly. To save energy, a D can also be placed with
runtime (and thus energy) zero at the end of the corresponding original task, because
it never has to be started in the fault-free case, i.e. when the completion of the
original task is successful. Such a D with runtime zero is then called DD (Dummy
Duplicate). To get a better fault tolerance (in terms of performance overhead in case
of a failure) the duplicates should be executed simultaneously to the original tasks
or at least as long as possible. However, increasing the execution time of duplicates
leads to an increased energy consumption. Fig. 3.3 shows this behavior with an

example schedule.

20

: Duplicate task
a) | [Original task

rvo [0 (EN R,

Time (t)
Maklespan
.
=5 16]
T T T T T T T T T T T T :I Tlme (t)

Figure 3.3: Fault-tolerant Schedule: a) Using Dummies and Duplicates to Increase
the Fault Tolerance, b) Only Using Dummies to Get a Better Energy
Consumption.

In the upper case, duplicates are executed as long as possible without prolonging
the makespan. In the bottom case, only DDs are used. Hence, in the fault-free case
no energy has to be consumed for the DDs.

In terms of energy consumption the tasks should run with a low frequency to
save energy. But slowing down the tasks without changing the mapping of the tasks
results in different gaps and thus to another placement of the duplicates that might
result in a higher performance overhead in case of a failure. Additionally, also the
duplicates have to be slowed down because otherwise a duplicate would finish earlier
than the corresponding original task. Thus, the duplicates are prolonged and gaps
might become too small for the placement of whole duplicates. In this case, either
the succeeding tasks have to be shifted and the makespan is significantly increased

or the duplicates can only be executed for a short time before the next original task

51

starts. For this reason, the remaining part of the duplicates, that has to be executed
in case of a failure, grows and leads to a higher performance overhead. In Fig. 3.4 an
example schedule is illustrated (a) and the resulting schedule, when the frequency

is scaled down to save energy (b).

Makespan

' Duplicate task
a) B Original task

T [1 T T 7 T T T T T7T

Time (t)

Resulting overhead

\
[|

Old makespan

b)
New makespan

|| Time (t)

PU1

PUO

Figure 3.4: Placement of Duplicates: a) Running at a High Frequency (e.g. 2 GHz),
b) Reducing Energy Consumption by Scaling Down the Frequencies (e.g.
to 1 GHz).

In the upper schedule, the duplicates of tasks 0, 5, and 7 can be executed for
a short time. In the bottom case, when using a lower frequency, the duplicates of
tasks 0, 4, and 6 can be executed partly.

Zhao et al. [193] present a fault-tolerant scheduling algorithm, called MaxRe,
with a dynamic number of replicas for heterogeneous systems. They focus on cloud
environments and consider crash faults. Typically n replicas are needed to tolerate
n failures. In their work, they show that a higher number of replicas does not always
lead to a higher reliability. The longer a resource is used and the higher the usage
rate of a resource is, the higher is the probability of a failure. Thus, filling up a
schedule with replicas might lead to more failures. They try to minimize the number

of replicas while satisfying the user’s reliability requirements.

52

Aupy et al. [12] also present some works about fault tolerance and energy efficiency,

but with checkpointing instead of task duplication.

3.2 Fault-free Case vs. Fault Case

Yet another trade-off exists between the fault-free case and the fault case. Most im-
provements in the fault-free case lead to some worsening in the fault case and vice
versa. For example focusing on the performance in the fault-free case (not consider-
ing the marginal case in Sect. 3.1.1) means using placeholders (so called Dummies)
as duplicates where necessary and consider the communication times between all
duplicates and original tasks only in case of a failure. Thus, the worsening of the
performance is shifted from the fault-free case into the fault case. When focusing on
the energy consumption in the fault-free case, the tasks (and thus the duplicates)
are prolonged because the frequencies of the PUs are scaled down. In case of a
failure, these duplicates cause a higher performance overhead, because they still run
with a low frequency. Focusing on the fault tolerance in the fault-free case improves
on the one hand the performance overhead in case of a failure, but on the other
hand increases the energy consumption in the fault-free case. However, either this
trade-off must be considered directly when focusing on the fault-free case, or there
have to be other options and strategies for the fault-free case and in case of a fail-
ure, so that the preferences of a user can be set independently in both cases. As the
approaches in the literature focus only on one of both cases, there does not exist

any work about a combined approach that considers directly this trade-off.

3.3 Three-dimensional Optimization: Performance

vs. Fault Tolerance vs. Energy Consumption

As seen in Sect. 3.1, a trade-off already exists in all two-dimensional cases. A com-
bination of all three criteria, performance, fault tolerance and energy consumption
leads to several additional optimization parameters. While one criterion is improved,
either one or both of the others are worsened. But it is unclear how this worsen-
ing should be distributed to the other criteria. The main focus varies in different
situations. For example, in a time critical environment, the performance is the
most important criterion next to the fault tolerance. Thus, in this situation the

performance and the fault tolerance is usually favored over minimizing the energy

93

consumption. Another situation is that a failure occurs extremely rarely and thus
the energy consumption in a fault-free case becomes more important. Another ex-
ample exists in mobile devices, such as smartphones and laptops, where the energy
consumption is the most important criterion next to the performance. Thus, the
main focus is put on the energy consumption and on the performance while fault
tolerance is neglected.

Especially for real-time systems, approaches are given in the literature, that com-
bine all three criteria. The real-time constraint itself can be interpreted as the
performance criterion, because in such systems the execution of a task or schedule
has to be finished before a deadline. Thus, the performance is fixed while the other
criteria are improved. In real-time systems, the focus typically lies on transient
faults, where checkpointing or backup mechanisms are used to circumvent a fault.

For example, Cai et al. [37] present a greedy heuristic to reduce the energy con-
sumption in fault-tolerant distributed embedded systems with time-constraints. The
fault tolerance is given by a combination of re-executing tasks and using replication.
They assume a heterogeneous system environment where the processors are con-
nected via a bus. They focus on transient faults and they use a reserved slack
for the re-execution. Their greedy heuristic searches for the task that consumes
the most energy and try to either change the mapping of the task or to include (or
delete) a replica. This procedure is repeated until all tasks are considered or until no
further energy improvement can be achieved. Thus, in their work the makespan of a
schedule and the fault tolerance is fixed while the energy consumption is improved.

In 6], Alam and Kumar present another approach. They assume that only one
specific transient fault could occur during the execution of a task. Checkpointing is
used to tolerate faults and a fault is detected within the next checkpointing interval.
Then, the last checkpoint is used to execute the remaining part of the task. The
minimization of the energy consumption is done by DVS; i.e. using a discrete voltage
level with its corresponding clock speed. To achieve a good fault tolerance, they find
the optimal number of checkpoints to be included into the tasks. In their work, the
performance is fixed, while the fault tolerance and energy consumption is being
optimized.

Tosun et al. [175] present a framework that is used to map a given real-time
embedded application under different optimization criteria onto a heterogeneous
chip multiprocessor architecture. They consider energy consumption, performance,
and fallibility (the opposite of reliability) as objective functions or constraints for

their ILP formulation. Duplicating tasks is used to detect faults and DVS for energy

o4

savings. The processors are connected via a shared bus system and communication
overheads are neglected. A result checker after each task and its corresponding
duplicate is used to find a fault. They focus on the trade-off between increasing the
number of duplicates, energy consumption, and performance.

However, the alignment of the optimization is very situational and ultimately

depends highly on the user preferences.

3.4 Estimation of Upper/Lower Bounds

3.4.1 Performance

Focusing on performance PE, the best solution is to parallelize an application as
much as possible. Furthermore, the highest available frequency fpighest should be
selected, if the system in use supports different frequencies. Then, a simple general
upper bound for the performance can be described as the following equation, where
Mseq is the makespan in cycles, when all tasks are running in sequence and pp,q, €

PU is the maximum number of PUs used:

Meseq

PEbest — (31)

Pmaz - fhighest
A lower bound for the performance can be achieved by running all tasks in se-
quence on one PU with the lowest possible frequency fiowest- Equation 3.2 shows

this context:
Mseq

PEwors i
! 1- flowest

(3.2)

3.4.2 Fault Tolerance

While a schedule is either fault-tolerant or not, in this thesis, the fault tolerance F'T’
is rated by the performance overhead in case of a failure. Therefore, when focusing
on the fault tolerance the best solution is to copy the whole schedule and execute it
simultaneously (completely independent) to the original one on other PUs. Then,
both the performance, i.e. the makespan my, in case of a failure and in a fault-free

case m are equal. Accordingly, the performance overhead results to zero percent.

Flyos = W -100 = 0% (3.3)

95

However, the worst solution is when the schedule is not fault-tolerant and a failure
occurs directly before the end of the schedule execution. Then, the whole schedule
has to be repeated on p — 1 PUs and the makespan my = 2 -m in case of a failure
is at least doubled in comparison to the fault-free case m. Thus, the performance
overhead in case of a failure results in 100 percent.

2.

Flyos > 2= 100 = 27 100 = 100% (3.4)
m m

3.4.3 Energy Consumption

The energy consumption for a schedule execution is highly dependent on the power
consumption of the processors in use. As the power consumption of different pro-
cessors varies significantly, a general upper or lower bound cannot be determined.
Only when a specific processor or power model is considered, the boundaries can
be defined. However, instead of finding general boundaries, some factors are given
that influence the energy consumption and thus the upper and lower bounds. Then,
exemplary the lower and upper bounds for a simple cubic power model are described.

The power consumption of a processor (core) can be subdivided into a static
part that is frequency independent and a dynamic part that depends on both the
frequency and the supplied voltage (see Sect. 2.5.2). When the static power con-
sumption is high in comparison to the dynamic power consumption, using a certain
frequency influences the total power consumption a little. Thus, speeding up a task
by running at a high frequency is more energy-efficient than running at a low fre-
quency. In contrast, when the static power consumption is low, it is better to scale
down the frequency and thus slowing down a task to get a low energy consumption.

The idle power consumption influences the lower and upper bounds significantly.
When the idle power is high, a reduction of the idle times within a schedule would
lead to better results than having a lot of gaps between the tasks. Thus, trying to fill
up the gaps within a schedule with duplicates and shutting off all unused processors
would be better than using a free processor for the duplicates. If the idle power can
be neglected, because it is very low or cores can go to sleep mode, both solutions
would lead to the same energy behavior.

Another reason results from different instructions. For example, a task with many
load and store instructions leads to a different energy consumption than a task with

many arithmetic calculations and only a few load and store instructions.

o6

It is important whether only the power consumption of a processor core is con-
sidered or the power consumption of the whole processor. If the focus lies on the
processor core, the static power consumption is very low, because there are only a
few components within the core that influence the power consumption. From the
perspective of a processor in total, there are many components like the memory
controller, the low-level caches, graphic units etc. that also influence the power con-
sumption. Additionally, some components might only be switched on when at least
one processor core is under load. So that the relation between running in idle mode
and executing something on one core might be more complex than focusing only on
a processor core and its components.

Starting from a simple cubic power model for the dynamic power consumption,
i.e. at frequency f, a core consumes power proportional to 2. The energy consump-
tion of a task t; is then the product of power and task runtime which is inversely
proportional to the frequency. For simplicity, constant factors and low-order terms

are left out. Then an upper and lower bound for the energy consumption can be

given by:
n—1
t;
EbESt = Z m ’ fliwest’ (35)
1=0
n—1
t;
Eworst = Z - f/fighest‘ (36)

i=0 fhighest

In this model, the idle power and power for communication is neglected and thus
only the sum of all tasks has to be considered but not the concrete mapping or

scheduling or the resulting makespan.

o7

o8

4 Fault-tolerant and
Energy-efficient Scheduling

In this chapter, various approaches that include fault-tolerant and energy-efficient
aspects into the scheduling process are presented. Starting with the assumptions
in Sect. 4.1, fault-tolerant scheduling heuristics are given in Sect. 4.2. Next to
the previous work, new fault-tolerant heuristics are introduced. In Sect. 4.3 several
extensions, i.e. heuristics and options are presented that combine energy savings and
investments with the fault-tolerant approaches for both the fault-free case and in
case of a failure. As these extensions affect different parts of the heuristics, possible
combinations of those are discussed in Sect. 4.4 and new combined strategies are
proposed that reflect different preferences of a user. Finally, energy-optimal solutions

are presented in Sect. 4.5.

4.1 Assumptions

In this work, homogeneous systems with a fully meshed network are considered.
Starting from an already existing schedule (and task graph), the following schedul-
ing algorithms are used afterwards to include fault tolerance and energy efficiency
aspects. Thus, these algorithms are not restricted to specific schedulers and there-
fore can be combined with every static scheduling method. To be independent from
a concrete system, one assumption and also goal is to support the scheduling and
execution without any changes of the operating system. Hence, a corresponding
scheduler and runtime system is built on top of the operating system.

As failure model, the crash model is assumed (see Sect. 2.4) and a single perma-
nent fault can occur during the runtime of a schedule. For simplification, possible
bottlenecks e.g. in memory or network bandwidth are not considered. The proba-
bility of a fault is neglected in the following presentation.

A maximum load level of a PU is considered by assuming computational tasks

with a standard instruction mix. Influences in the power consumption due to the

99

temperature are ignored because the temperature is assumed to be kept constant
by active cooling. Also influences due to the voltage are neglected as the voltage is
always scaled with the frequency to the lowest possible level.

A task can only run with one frequency, i.e. a frequency change during the runtime
of a task is prohibited. Switching times between different frequencies and the cor-
responding energy consumption are neglected as the time and energy for executing

tasks is much higher in comparison.

4.2 Fault-tolerant Scheduling Heuristics

4.2.1 Previous Work

In the following, the static task duplication-based approach of Fechner et al. [59]
(see Sect. 3.1.1) is described in more detail, as it is used, extended and combined
with energy-efficient options and heuristics. The main goal of Fechner et al. is
to guarantee no overhead in a fault-free case and only a small overhead in case
of a failure. Their assumptions are included in the assumptions given above (see
Sect. 4.1), except the failure model, where they assume a fail-stop model. As in
the implemented runtime system, described in Chap. 5, all PUs get the information
about a failure shortly after its occurrence, the behavior is nearly equal to the fail-
stop assumption. Therefore, their approach can also be used with the assumptions
described above.

To be fault-tolerant, each original task within a schedule is copied and its duplicate
(D) is placed onto another PU. In case of a failure, the execution of a schedule can
be continued by running the duplicates instead of the faulty original tasks. If an
original task has finished it sends a commit message to its corresponding duplicate,
so that it can be aborted. Fig. 4.1 illustrates this context.

Typically, in a schedule several gaps exist because of dependencies between tasks,
i.e. a task must send its results to successor tasks that use them as input to start
their execution. A duplicate can be placed either in those gaps or directly between
two succeeding tasks. To avoid an overhead in the fault-free case, in all situations
where a duplicate would lead to a shift of all its successor and succeeding tasks!

only a placeholder, a so called dummy duplicate (DD) is placed. A DD cannot be

ITo differ between successor tasks because of dependencies and successor tasks because they are
placed in sequence on a common PU, in this work the term "successor" is used for the former
kind, the term "succeeding" for the latter kind.

60

PU 1

PU 0

2 4 6 8 10 12 Time (t)

Figure 4.1: Abort Duplicate After Finishing Original Task [59].

placed earlier than the end of its corresponding original task, as the information
about the correct execution is then confirmed by the commit message so that a DD
never has to start in the fault-free case. The DD is only extended to a fully duplicate
in case of a failure, when the commit message is not received. The communication
overhead is increased for duplicates that start and finish at the same time as their
corresponding original tasks, because both send its results to the same successor
tasks. To reduce the communication overhead, duplicates are placed with a short
delay, so called slack (see Fig. 4.1). Thus, either the results of an original task are
sent to its successor tasks (in a fault-free case) or the results of the corresponding
duplicate (in case of a failure), but not both.

Fig. 4.2a illustrates an example task graph. For a better understanding the com-
munication times and the slack are omitted. Figs. 4.2b and 4.2c show the resulting
schedules of two strategies.

The first strategy uses only DDs and takes not much advantage of gaps. As the
DDs are placed with runtime zero, the performance overhead in a fault-free case can
be guaranteed to be zero. In case of a failure, the DDs of the corresponding faulty
original tasks are converted to Ds and executed. Therefore, a moderate overhead
arises in the fault case. In the second strategy, all DDs within a gap are checked
whether they can be directly converted to Ds. If a DD is placed at the end of its
corresponding original task and if there exists an idle time before the DD, it can be
converted to a D. The size of the D is then bounded by the idle time before the D.
In this strategy, gaps are used more efficiently and no performance overhead exists
in the fault-free case. In case of a failure, Ds only have to be extended for a short
fraction so that the performance overhead can be decreased.

In [53], Eitschberger and Keller show that the consideration of communication

times is important for the placement of Ds and DDs. If two tasks are placed on

61

a) ° DD) Makespan
{ DD | M Original task
PU 1 ‘
b)

Duplicate task

PU O
e I Time (t)
(+) PU 1
c)
PU O
Q I Time (t)

Figure 4.2: a) Simplified Taskgraph, b) Strategy 1: Use Only DDs, c) Strategy 2:
Use Ds and DDs [59].

the same PU, the communication time can be neglected and the above explained
strategies can be used without any changes. But if they are placed onto different
PUs, the communication time has to be considered. Therefore, Ds often must be
started delayed, depending on the schedule structure. The influence of communica-

tion times is illustrated in Fig. 4.3. We assume that task 0 requires five time units

PU 1
PU 0
" Time (t)
PU 1
PU 0
" Time (t)

Figure 4.3: Influence of Communication Times [53].

to transfer its results to task 1. In the upper case, the placement without any com-

munication time is presented. Task 1 can directly be started at the end of task 0.

62

In the bottom case, the resulting placement by considering the communication time
is shown. Hence, task 1 cannot be started anymore at the end of task 0, because
it has to wait for the results of task 0. Thus, it can only be started after five time
units. As duplicates and original tasks are placed onto different PUs, at least one
of them is on another PU than its predecessor.

The consequences are demonstrated exemplary for the first strategy by extending
the initial task graph and schedule example. We assume there is a further task
(task 5), that is a successor of task 2 and a communication time ct between task 1 and
task 2 that is longer than the execution time of task 2, e.g. ¢t = t2+x. Fig. 4.4a shows
the resulting task graph and the schedule without considering the communication

time (Fig. 4.4b) and with the communication time included (Fig. 4.4c).

a’) ° Makespan
PU 1
ONONON

PUO

[Original task
Duplicate task

12 Time (t)

O
PUO

Figure 4.4: a) Extended Task Graph, b) Schedule without and ¢) with Communica-
tion Time [53].

The makespan in the upper case is not changed and no overhead exists. In the
bottom case, when considering at least one communication time, the makespan is
increased and an overhead directly arises. Thus, the above explained strategies
cannot be used in its current version to guarantee no overhead in a fault-free case,
when communication times are included.

Eitschberger and Keller present an adapted version [53| that guarantees no over-
head in a fault-free case, even when considering communication time. They propose
to handle the fault-free and fault case separately. In the fault-free case, some com-
munication times can be neglected, as some are only needed in case of a failure.

Therefore, communication times between DDs and original tasks (and only in this

63

order) are not considered in the fault-free case. With this extension, no overhead in
a fault-free case can be guaranteed. Only in case of a failure, these communication
times have to be considered, because then some of the DDs are converted to Ds and
executed. Hence, their results have to be sent to the successor tasks, which leads to
a few more shifts of tasks in the fault case.

However, in the fault-free case DDs sometimes have to be placed during the run-
time of original tasks on the same PU. Thus, there exist some overlapping of tasks.
But as the information about a failure is known prior to the DD execution, these
overlapping can be solved in the fault case. To support this behavior, each PU needs
the information about the complete task graph. A memory buffer is required to hold
the results of tasks that have finished, so that the transmission to successor tasks
on other PUs is continued in case of a failure. Fig. 4.5 illustrates the placement of

DDs for the old and for the new version.

a’) e Makespan
2 + x :
' [Original task
PU 1
b)

Duplicate task
PUO

2 4 6 8 10 12 Time (t)

O
PUO

Figure 4.5: a) Example Taskgraph, b) DD Placement Old Version, ¢) DD Placement
New Version [53].

In Fig. 4.5b the old schedule with an overhead in a fault-free case is shown. In
Fig. 4.5¢ the new version is depicted. Here, an overlapping of DD2 and task 5 exists
and the makespan remains constant.

An implementation of a corresponding scheduler that supports the above ex-
plained duplicate placement strategies is presented by Eitschberger and Keller [53].
The scheduler consists of two parts: One part for the schedule generation, i.e. the
placement of duplicates, the other for simulating the execution of a schedule in the

fault-free and fault case to predict the overhead. The scheduler has various options

64

that can be set like using different strategies, setting the time for the slack and
considering free processors for the placement of duplicates that are available but
unused. The simulator firstly predicts the performance overhead in the fault-free
case. It secondly simulates a failure for each task (at the end of a task) to calculate
the overhead in a fault case. A detailed description can be found in [44] and [53].
This scheduler (and simulator) is used and extended in this work by the heuristics
and options explained in the following subsections and in Sect. 4.3.

The overhead of the scheduling strategies is evaluated with a synthetic benchmark
suite of Honig [84]. In total nearly 34,000 (performance optimal) schedules and
task graphs are considered with different properties like the number of tasks, the
number of PUs, or the edge density. As this benchmark suite is used in this work, a
detailed description is given in Sect. 6.1.1. The overhead in the fault-free case of both
versions, i.e. the version of Fechner et al. and the extended version of Eitschberger

and Keller is presented in Tab.4.1.

Table 4.1: Overhead in the Fault-free Case [53].

Version Fechner et al. | Version Eitschberger and Keller
Strategy 1 2.52% 0.00%
Strategy 2 2.52% 0.00%

In the previous version (left column) a relative overhead of around 2.5% on average
arises for both strategies. In contrast, the new version (right column) guarantees no
overhead in the fault-free case. As the second strategy is based on the first one, the
general placement of DDs is the same. Only if possible, DDs are converted to Ds.
Therefore, the overhead of both strategies is equal in the fault-free case. In Tab. 4.2
the minimum, average (averaged over all failure points) and maximum overhead for

both strategies and versions in the fault case are shown.

Table 4.2: Overhead in the Fault Case [53].

Minimum | Average | Maximum
Strategy 1 (Fechner et al.) 7.43% 24.23% | 39.61%
Strategy 2 (Fechner et al.) 6.41% 22.08% | 37.18%
Strategy 1 (Eitschberger and Keller) | 5.28% 22.89% | 39.05%
Strategy 2 (Eitschberger and Keller) | 4.19% 20.87% | 36.83%

The improvements of using Ds (if possible) directly in the fault-free case for the
second strategy are for all versions around 2%. The improved version of the strate-

gies leads to better results in case of a failure compared to the results of the previous

65

version. While for the previous version the overhead is on average 24% for strat-
egy 1 and 22% for strategy 2, the overhead of the improved version is around 1.3%
lower. The maximum overhead of both versions is for all strategies nearly the same,
but the minimum overhead is up to 2.2% lower in the improved version. The large
difference in general between the minimum and maximum overhead results from the
time at which a failure occurs. Is a failure directly in the beginning of a schedule,
several duplicates have to be extended, tasks have to be shifted and a high overhead
arises. In contrast, when a failure occurs shortly before the end of a schedule, only
few duplicates must be extended and fewer shifts must be performed. Therefore,
the overhead in the latter situation is small.

In this work, only the new version proposed by Eitschberger and Keller is used for
the placement of Ds and DDs (Strategy 1 and 2). Therefore, no difference is made

in the following between the versions.

4.2.2 Use Half PUs for Originals (UHPO)

A simple way to achieve a high FT is to use half of the available PUs for original
tasks and the other half for placing duplicates. In this case, the already existing
schedule is not used anymore. Instead, a simple list scheduler generates a new
schedule with the reduced number of PUs. A copy of the schedule can then be
placed onto the remaining PUs. Dependencies between original tasks and duplicates
are not considered, because both schedules are executed synchronously. Therefore,
the performance of a schedule is not influenced in case of a failure. In Fig. 4.6 an
example schedule (upper case)? and the resulting schedule by using this heuristic
(bottom case) is illustrated.

In this example, all tasks are placed in sequence on one PU and the transfer times
between the tasks do not have to be considered anymore (bottom case). Thus, no
parallelism is used anymore within the original schedule, because only two PUs are
available. Instead, a copy of the sequential solution is placed on the other PU.
This heuristic can only be used in the fault-free case, because only one failure is
considered and thus no more duplicates have to be included in case of a failure. In

Lst. 5.1 a simplified code for the list scheduler is shown.

2For simplification, all following examples are related to this example schedule, if not declared
otherwise.

66

Makespan [Original task
; Duplicates

PU 1
PU O

Old New
makespan makespan

PU 1

PUO

2 4 6 8 10 12 14 Time (t)

for(taskIndex = 0; taskIndex < numberOfTasks; taskIndex++) {
earliestBeginning = -1;
currentProcessor = beginProcessorList;
halfProcessors = 0;
while(currentProcessor != NULL && halfProcessors < numberOfProcessors/2)
{
beginning = 0;
for(j = 0; j < task[i].predecessornumber; j++)
if (predec[i] [j] .processorindex != currentprocessor->processorindex)
if (predec[i] [j].finishtime + predec[i] [j].transfertime > beginning)
beginning = predec[i] [j].finishtime + predec[i] [j].transfertime;
if (currentprocessor->task != NULL) {
currenttask = currentprocessor->task;
while(currenttask->next != NULL)
currenttask = currenttask->next;
if (currenttask->finishtime > beginning)
beginning = currenttask->finishtime;
}
if (earliestBeginning == -1 || earliestBeginning > beginning) {
earliestBeginning = beginning;
bestProcessor = currentProcessor;

}
halfProcessors++;
currentProcessor = currentProcessor->next;
}
createtask(...);
inserttask(bestProcessor, earliestBeginning,...);

3

Listing 4.1: Pseudo Code of the List Scheduler.

67

For each task (line 1) the earliest beginning is initially set to -1, the current
processor is the first processor in the processor list and halfProcessors is set to
zero (lines 2 - 4). Then, for each processor of the first half (line 5) the beginning
of the new task is set to zero (line 6). The list scheduler checks when the starting
time of the new task would be, because of the dependencies and transfer times of
the predecessors (lines 7 - 10). If there exist tasks on the current processor (line 11),
the finish time of the last task is compared with the beginning of the new task. Is
the finish time later, the beginning has to be corrected (lines 12 - 17). Thus, also
predecessors that are placed on the current processor (without any transfer times)
are considered. Then, the overall earliest beginning and the corresponding processor
are corrected (lines 18 - 21), halfProcessors is incremented and the next processor
is checked (lines 22 - 24). Finally, when half of the available processors are checked,
the new task is created and inserted on the best processor with the earliest start
time (lines 25 - 27).

To place the duplicates, the best processor is fixed by using the processor index
for the original task plus half of the processors. Thus, the duplicates are mapped in

the same way like the original tasks, but on the other half of the processors.

4.2.3 Excursion: Use Duplicates for Delayed Tasks

Static task duplication is typically used either to reduce communication costs or to
tolerate failures that occur during the runtime of a schedule. However, duplicates
can also be used in other situations to improve the performance of a schedule. For
example as demonstrated by Eitschberger and Keller [53| in case of a performance
loss of a PU. Especially in grid systems, the owner of a PU might need a fraction of
the computing power of a PU for other executions. In this case, the scheduled orig-
inal task can only be executed with the remaining fraction of the computing power.
Thus, the task is slowed down and the computation time is extended. When the
execution of a slowed original task becomes longer than executing the corresponding
duplicate, it can be worthwhile to abort the original task and execute the duplicate
instead.

To handle such slowdowns, the completion time of the original task with the re-
duced performance has to be calculated during the runtime and sent via a message
to the corresponding duplicate. Then, the predicted finish time of the duplicate can
be compared with the completion time of the slowed original task. If the duplicate

can finish earlier, an abort message is sent to the original task, otherwise the dupli-

68

cate is aborted. While task slowdowns are usually considered in dynamic scheduling,
this approach is a combination of static and decentralized dynamic scheduling, i.e.
a hybrid method. In Fig. 4.7 different situations are shown in which the execution

of a duplicate can lead to a better performance of the schedule.

ct = computationtime

Cases . |
Original with slowdown

2 | et
oD i

3 |—> ct i
DD :

Time (t)

Figure 4.7: Cases of Placed Duplicates Compared with a Slowed Original Task [53].

In the first case, the duplicate starts during the execution of the original task.
As the performance of the duplicate is not changed, it can finish earlier. In the
second case a dummy duplicate is placed at the statically predicted end of the
original task. As the slowdown of the original task leads to a higher prolongation,
the dummy duplicate can be extended to a duplicate and then be executed. In
the last case, the dummy duplicate is also placed at the end of the static predicted
finish time of the original task. But in this case, a shift of the dummy duplicate
because of some dependencies is only considered in case of a failure by the static
scheduling. Thus, only if the shift and the computation time of the extended dummy
duplicate leads to an improvement, the dummy duplicate is extended and executed,
otherwise it is not started. This method can be considered by a corresponding
runtime system because it affects the schedule dynamically during the runtime.
Therefore, to evaluate this method it is implemented in the simulator. For each
original task successively a slowdown is applied by a user-defined percentage rate.
In every slowdown scenario the computation time of the slowed task is calculated
and then two cases are simulated: On the one hand the schedule execution by using
the slowed original task and all resulting shifts of the successor and succeeding tasks.
On the other hand the schedule with the corresponding D or DD executed instead of

the slowed original task. This is only considered if one of the situations in Fig. 4.7 is

69

given. Finally the resulting makespans of both cases are compared and the potential
improvement of using the corresponding D or DD is saved.

Nearly 34,000 (performance optimal) schedules of the synthetic benchmark suite
of Honig [84] (see Sects. 4.2.1 and 6.1.1) are simulated for a slowdown of 50%, 6,800
schedules for a slowdown of 70%, and 10,164 schedules for a slowdown of 80%. In
Tab. 4.3, the minimum, averaged and maximum results for strategies 1 and 2 are

depicted.

Table 4.3: Improvement of Makespan with the Use of Duplicate in Case of 50 %,
70 % and 80 % Slowdown [53].

slowdown Strategy 1 Strategy 2
Minimum | Average | Maximum | Minimum | Average | Maximum
50 % 0.00 % 0.00 % 0.00 % 0.98 % 3.03% 31.25%
70 % 0.13% 8.03% 39.36% 0.13% 8.55% 39.36%
80 % 0.31% 14.93% 43.18% 0.31% 15.39% 44.43%

In strategy 1 where DDs are used, an improvement can only be achieved for
slowdowns that are higher than 50%, as a DD starts at the end of the corresponding
original task and thus finishes at the same time like the original task with a doubled
(50% slowed down) computation time. As expected, the improvements increases
with an increased slowdown. However, while the averaged results seem small, a
single task is slowed down in this experiments, the runtime of a task only remains a

fraction of the total schedule runtime, so that a high improvement is not expected.

4.3 Energy-efficient Scheduling Heuristics and
Options

In this section, two heuristics and an additional option are presented that mainly
focus on the fault-free case. Then, several heuristics and options for the fault case
are described that can be used to reduce the energy consumption or to invest energy

for improving the performance in case of a failure.

4.3.1 Buffer for Energy Reduction (BER)

A schedule typically consists of several gaps resulting from the dependencies between
the tasks. These gaps can (partly) be used to prolong tasks by scaling down the

frequency of corresponding PUs to save energy. To avoid an increase of the overall

70

makespan, tasks can only be slowed down if they are not on the critical path. A
slowed task can lead to a shift of the successor and succeeding tasks. However, as
long as tasks of the critical path are not involved the makespan does not change.
Therefore, the frequency to slowdown a task must be set appropriately. As an
operating system does not have any information about a schedule, it can not scale
the frequencies of supported PUs efficiently. Thus, the frequency scaling must be
done by the scheduler or the underlying runtime system (see Sect. 2.5).

In the work of Eitschberger and Keller [54], a two-step greedy heuristic is proposed
that reflects the explained behavior. They consider only tasks followed by a gap for
a potential slowdown. In a first step, a so-called buffer is calculated for the tasks.
The buffer represents the additional time that can be used to slowdown the task
without affecting the makespan. In a second step, the lowest possible frequency for

a task 7 is determined by considering the buffer b; for the runtime r; of the task;

i.e. the current frequency can be scaled down by a factor T'izbi. If the calculated
frequency is not supported, the next higher frequency is used and the runtime is set
accordingly.

In Fig. 4.8, an example schedule with the calculated buffers is shown. There are
gaps after tasks 0, 1 and 2 in the schedule. Thus, only these tasks are considered
for a potential slowdown. The finish time of task 0 is at ¢ = 4. The transfer of the
results to task 3 needs ¢t = 2 time units and task 3 starts at ¢ = 6. Therefore, task 0
cannot be prolonged and the corresponding buffer is considered zero. Task 1 finishes
at t = 3. The transfer time to task 2 is ¢ = 4, but task 2 starts at ¢t = 8. Thus,
the buffer of task 1 results in 8 — 4 — 3 = 1. Finally, task 2 ends at ¢t = 10 but the
makespan is at ¢ = 12. As task 2 is an ending task, the distance to the makespan is
considered and the resulting buffer is getting two time units. So tasks 1 and 2 can

be slowed down.

Makespan
[Original task
PU 1 Buffer
PU O
T
Time (t)

Figure 4.8: Example Schedule to Illustrate the Frequency Scaling Heuristic [54].

In case of a fault-tolerant schedule, Ds can be treated similarly. To achieve a

high energy reduction, the Ds of slowed original tasks should be slowed down by the

71

same frequency. Thus, a buffer of an original task is reduced to the length of the
corresponding duplicate buffer, if that is shorter. Buffers of successor and succeeding
tasks can also be used to extend the buffer of an original task by shifting the tasks
accordingly. DDs, in contrast, are not considered for a prolongation, because they
are placed with runtime zero. Therefore, these are not executed in a fault-free case.
They can only be shifted. For all remaining gaps the frequencies of the PUs can be
scaled down for further savings to the lowest supported frequency, i.e. to the idle
frequency. This heuristic is related to the fault-free case. However, it is indirectly
also used in the fault case, e.g. in the EP-heuristic explained in the following. In

Lst. 4.2 the pseudo code of the heuristic is presented.

Set all task->buffers to 0;
helpbuffer = 0;
gap = task->finishtime until next original task->starttime
for(all tasks followed by a gap) {
if (successor tasks exist)
task->buffer = min(distance to all successors - transfer times);
else {
if(task is an ending task)
task->buffer = makespan - task->finishtime;
else
task->buffer = gap;

—
OO0 U = WN -

—_
N —

}
}
14| for(all Ds, where original task->buffer > 0) {
15| if(D task->buffer < original task->buffer)

—
w

16 original task->buffer = D task->buffer;

17| helpbuffer = original task->buffer;

18

19| while(Ds exist in the gap (original PU))

20 consider all D task->buffers, reduce helpbuffer;

21| while(Ds exist in the gap (D PU))

22 consider all D task->buffers, reduce helpbuffer;

23| if (helpbuffer > 0) {

24 find the best frequency to fill the helpbuffer;

25 reduce the helpbuffer if necessary;

26| %

27

28| if (helpbuffer > 0) {

29 while(gap beginning is not reached (D PU), go backwards)

30 shift all Ds in the gap, reduce their buffers;

31 change/shift the D infront of the gap itself, reduce its buffer;
32 while(gap beginning is not reached (original PU), go backwards)
33 shift all Ds in the gap, reduce their buffers;

34 change the original task infront of the gap, reduce its buffer;
35| }

36|}

Listing 4.2: Pseudo Code of BER-heuristic.

72

The buffers of all tasks and the help buffer are initially set to zero (lines 1 - 2). In
every case, where a gap is after a task, i.e. the finish time of a task is smaller than
the beginning of the next original task, its buffer is firstly set either according to the
minimum time, that can be used without shifting successor tasks, or to the gap size
(lines 3 - 13). Thus, also duplicates® within a gap can have a buffer bigger than zero.
Secondly, to avoid shiftings as a result of duplicates, the buffers of all original tasks
are reduced to its corresponding duplicate buffers, if the duplicate buffers are smaller
and the help buffer is always set to the original task buffer (lines 14 - 18). Then, the
gaps between original tasks are checked. If there exist duplicates within a gap, these
buffers are considered to keep the buffer size of the original task before the gap as
large as possible (lines 19 - 20). Therefore, if a duplicate within a gap has a buffer
and the beginning of the duplicate lies within the buffer of the original task before
the gap, the duplicate could be shifted for the time of its own buffer. The beginning
of the duplicate can then be used as restriction for the buffer of the original task
and afterwards the duplicate buffer can be reduced for the time of the shifting. This
procedure can be repeated for all duplicates within a gap until the next original
task starts. The overall resulting buffer is saved in the help buffer. In the same way,
the duplicates within the gap on the corresponding duplicate PU are considered
(lines 21 - 22). The calculation of the overall buffer and the resulting shifting of all
duplicates within a gap (and the reduction of their buffers) is separated in two while
loops (lines 19 and 32 for the original task and lines 21 and 29 for the duplicate
task), because only if the overall buffer, i.e. the help buffer, is higher than zero, any
duplicate must be shifted. The buffer is then used to find the best frequency. A
frequency is selected to fill the help buffer as much as possible by slowing down the
task. If the help buffer cannot be filled completely, it is reduced to be filled by using
the next higher supported frequency (lines 23 - 26). At the end, if the help buffer
is still bigger than zero (line 28), all duplicates within the gaps can be corrected
backwards from the end of the gap. Finally, the buffer and properties of the original
task and its corresponding duplicate before the gap are corrected (lines 29 - 36).

Tasks are typically placed as early as possible in a schedule, so that only gaps
after tasks must be considered. However, in general also buffers before tasks are
possible, when tasks are placed later like task 2 in Fig. 4.8. The calculation of these
buffers and the corresponding frequencies of tasks can then be done in a similar way,
but from the end of a gap to the beginning. This leads to different frequencies and a

difference in energy consumption. While the consideration of both buffers, i.e. before

3In this context, the term duplicates is used for Ds and DDs.

73

a task and after a task, can lead to better results, a much more complex algorithm
and a longer scheduling time is necessary to find optimized solutions. A decision
about using a buffer then also influences the buffer usage of other tasks, i.e. the
starting (and ending) times of tasks, which results in several additional solutions to
be checked. As in the synthetic benchmark suite used in Sect. 6.1.1 tasks are always
placed as early as possible, the BER-heuristic is restricted to such cases. Therefore,

buffers before tasks are not considered.

4.3.2 Option: Insert Order (SDE vs. SED)

When considering both fault tolerance by duplicates and heuristics to reduce en-
ergy consumption like BER, the insert order can have a significant influence on the
optimization. While placing the duplicates first and reduce the energy afterwards
improves the F'T, the vice versa handling, in contrast, can result in a lower energy
consumption. Therefore, the user can select the order SED (Scheduling — Energy
— Duplicates) and SDE (Scheduling — Duplicates — Energy). In Fig. 4.9 both

situations are illustrated based on the initial example.

Makespan [Original task

Duplicate task
[Slowed task

PU 1
SED:
PU 0
Lo " Time (t)
Makespan
PU 1 |
SDE: 5 !
PU 0 4

2 4 6 8 10 12 Time (t)
Figure 4.9: Example Schedule to Illustrate the Changes by the Insert Order [54].
In the upper case (SED), the original tasks are slowed down first by the BER~
heuristic to reduce the energy. Then, the duplicates are included. Thus, tasks 1

and 2 are slowed down by using a lower frequency and only DDs can be placed for

all tasks. In contrast, in the bottom case (SDE) the duplicates are placed first.

74

Therefore, the buffers that were used to slowdown the tasks in the upper case are
now used to extend some DDs to Ds, when using the second strategy. While in this
example the energy cannot be reduced anymore by the BER-heuristic, there exist
other situations where only parts of the buffers are used for the Ds. Thus, the tasks
can be slowed down for a shorter time. The insert order is related to the fault-free
case only, because the duplicates are placed prior to execution and only one failure

is considered.

4.3.3 Change Base Frequency (CBF)

In a static schedule without fault tolerance or energy efficiency aspects, typically
one fixed frequency is assumed for the whole schedule, i.e. for all tasks and gaps.
Therefore, with this strategy the base frequency for the schedule can be changed
according to the user preferences. Scaling the frequency up or down leads to a
change of the runtime for all tasks. As the mapping of the tasks is not modified
in this heuristic, a change can lead to some shifts, so that the placement of the
tasks must be corrected. By considering the example schedule above, the resulting

schedule after a scale down of the base frequency is illustrated in Fig. 4.10.

Old New
makespan makespan

|l Original task |

PU 1

PU 0

Time (t)

Figure 4.10: Example Schedule with a Low Base Frequency.

With a lower frequency the makespan is increased and the tasks are prolonged,
but the energy might be reduced. This heuristic can also be used to improve the
performance of the schedule by scaling up the frequency and thus shortening the
runtime of tasks. Therefore, the CBF-heuristic can be used separately for both the
fault-free case and the fault case. In Lst. 4.3 the pseudo code of the heuristic is

presented.

5

readschedulefile(...);
createsprocessorlist(...);
for(all tasks){
newtask = createtask(...);
inserttaskinprocessorlist(...);
¥
for(all tasks){
change properties of the task;
shift(...);
¥

QOO0 Tk W+

—_

Listing 4.3: Pseudo Code of CBF-heuristic.

Initially, the already existing schedule (and task graph) file is read (line 1). A
processor list with the number of PUs is created (line 2). Then, all tasks are created
and inserted in the processor list on the corresponding PU (lines 3 - 6). Until now,
the schedule is created as given by the schedule and task graph file.

Then, for all tasks the properties are adapted by changing the base frequency to
the frequency (level) given by a user (lines 7 - 8). Firstly, the computation time
and the finish time of a task are changed. Secondly, the frequency used is saved.
Finally, the energy consumption is re-calculated with the new frequency. After all
properties are adapted, the successor and succeeding tasks are shifted according to
the prolongation or shortening of a task or according to the dependencies between
the tasks (lines 10 - 11). The mapping of the tasks is, therefore, not changed.
Only the beginning and ending of the tasks are modified. Gaps within a schedule
are sometimes filled by the prolongation of tasks and often new gaps arise by the

resulting shifts of other tasks.

4.3.4 Energy for Performance (EP)

A failure of a PU during the runtime of a schedule typically leads to a performance
overhead. While in a fault-free case the focus might be on the energy, this could
change in case of a failure. Then, a fast termination of a schedule can be preferable.
As demonstrated by Eitschberger and Keller [54], energy can be invested to improve
the performance of a schedule in case of a failure by scaling up frequencies and
thus speeding up the execution of tasks. One possibility is to consider all Ds and
DDs that have to be extended due to the failure and calculate for each of these
tasks a higher frequency that can be used to reduce or totally undo the resulting
overhead. When the calculated frequency for a task is not supported by the system,

the next higher or the highest possible frequency is used instead. In this heuristic,

76

each task can earliest start at the time given in the static schedule, independently of
dependencies and transfer times. An earlier start is not allowed. In Fig. 4.11 a fault-
tolerant schedule based on the example for the option SDE, see Fig. 4.9 (bottom
case), is shown for two failure cases. For simplification, a normalized frequency
of 1 is assumed in general and a continuous frequency range between 0.1 and 3.

Therefore, all tasks run initially with frequency 1.

& o PUO Makespan g™ ioinal task

Duplicate task

|
|
o 1 [
I |
PU 0 i
T T T T T T T T T T ; T
2 4 6 8 10 12 Time (t)
é on PU 1 Makespan
| i
PU 1

PU 0

T T I T T T T T T T T I T

2 4 6 8 10 12 Time (t)

Figure 4.11: Schedule in Case of a Failure with EP-option.

In the upper part of Fig. 4.11, a failure occurs on PU 0 at the end of task 0.
The duplicate 0 on PU 1 runs for one time unit at frequency 1. As the commit
message from task 0 is not received, the duplicate has to be extended. As a task can
only run with a constant frequency and no frequency changes are allowed during the
execution of a task, the remaining part of the duplicate (3 time units at frequency 1)
does not fit into the existing gap of two time units after the duplicate. Therefore,
the succeeding original task 3 is shifted by one time unit. The DD2 at the end of

the schedule can start at ¢ = 13. The runtime with the highest frequency results in

2 —
3

contrast, in the bottom case the same schedule is depicted with a failure on PU 1
at the end of task 1. In this case, the extended DD1 that is placed at t = 4 fits

into the gap and one time unit is still free to slow down the task. Thus, the new

0.67 time units. Thus, the resulting overhead cannot be undone completely. In

frequency can be calculated by 3—_3;1 = 0.75 and the gap is closed. The duplicate 3

7

starting at ¢ = 10 was initially scheduled with frequency 1. As the information
about the failure of PU 1 was already known before, the frequency for duplicate 3
can directly be scaled up. Thus, the runtime of duplicate 3 still remains two time
units but now with frequency 3. The makespan does not change and an overhead
can be avoided. Therefore, it is highly dependent on when a failure is occurred and
which frequencies are supported by the system used.

As Ds and DDs are always extended in case of a failure and only those tasks are
considered in the EP-heuristic, the implementation can directly be included in the
functions to check and change the properties of tasks in case of a failure. Then, the
new frequency and the resulting computation time of a task can be calculated similar
to the calculation in the BER-heuristic. Thus, tasks are speeded up if necessary, i.e.
if no buffer exist or the buffer is smaller than the extended duplicate. And tasks are
also slowed down if possible, when the buffer size of a task is bigger than the time
needed to execute the extended duplicate. However, this heuristic is restricted to

duplicates and only considers the resulting overhead for each duplicate separately.

4.3.5 Option: Delete Unnecessary Duplicates (DUD)

In case of a failure, PUs might be informed directly about the crashed PU, e.g. by
broadcasting a message to all remaining PUs. Then, all unnecessary duplicates do
not have to be executed and can be deleted, because only one failure is tolerated per
schedule. In contrast, if the information about a failure is not sent directly to all
remaining PUs, each PU gets the information separately when it sends a message
to the crashed PU. Therefore, with this option different system behaviors in case of

a failure can be set.

4.3.6 Lazy Frequency Re-scaling (LFR)

To optimize the energy for a given deadline in case of a failure, the frequencies of
tasks can be re-scaled (without changing the mapping). As deadline, the makespan
of the fault-free schedule is assumed. Eitschberger and Keller present in [56] an
online scenario where the frequency for a task is set according to the remaining time
and workload on the corresponding PU until the deadline. Therefore, for each task
the difference between the deadline and the start time is calculated and divided by
the sum of the workloads of all remaining tasks on the PU (originals and duplicates).
Thus, the frequencies are always set to the lowest possible. However, because of gaps

between tasks and shifts that result from extending DDs, this heuristic ends up with

78

high frequencies close to the deadline and is, therefore, called lazy. This heuristic is
only related to the fault case.

Consider the initial example schedule and a failure on PU1 at the end of task 1,
similar to the example in Fig. 4.11 bottom case. In Fig. 4.12 upper case, the sched-
ule is depicted without any frequency scaling. An overhead of four time units is
present. For simplification, a normalized frequency of 1 is assumed in general and
a continuous frequency range between 0.1 and 3. Therefore, all tasks run initially

with frequency 1.

éon PU 1 Makespan

[Original task
Duplicate task

PU 1

10 12 Time (t)

PU 1

PU 0
1.375

10 12 Time (t)

Frequency

Figure 4.12: Example Schedule to Illustrate the Changes by the LFR-heuristic.

In the bottom case of Fig 4.12, the lazy frequency scaling is shown. In the fault-
free case, all tasks are running with the normalized frequency 1. At time unit 4
the duplicate of task 1 on PU 0 has to be executed. Now, to calculate the new
frequency, the sum of the remaining task workloads on this PU is divided by the
remaining time until the deadline, i.e. % = 18—1 = 1.375. Duplicate 1 is executed
with a frequency of 1.375. As in this example only two PUs exist (where one PU
has failed) no transfer time is considered, because all remaining tasks must run on
PU 0. In contrast to the EP-heuristic (where each task can earliest start at the time
given by the static schedule), the tasks are allowed to start when all results of the
predecessors are available. Therefore, tasks are not only shifted forward but also
sometimes backwards if possible. Hence, task 2 can directly be started after D1 and

also task 3 after task 2 with a frequency of 1.375 and without any overhead.

79

However, in this example the lazy frequency scaling behavior is invisible, because
there are no transfer times to be considered and thus all remaining tasks are running
with a constant frequency of 1.375. To demonstrate the "lazy" behavior, an extended

example is given in Fig. 4.13.

é on PU 1 Makespan

: i [Original task
Duplicate task

PU 2

PU 1

PU O

2 |
1
1

PU 2

PU 1

PU 0
Frequency

j i
2 4 6 8 10 12 Time (t)

Figure 4.13: Extended Example Schedule to Illustrate the Changes by the LFR-
heuristic.

In this example, yet another task (task 4) is executed on an additional PU (PU 2)
and has to send its result to task 2, that takes three time units. Therefore, task
2 can not be started before ¢t = 8. In the upper case, the new schedule without
any frequency scaling is depicted. The overhead is the same like in the example
before. In the bottom case, task 2 can only be started at t = 8 because it has to
wait for the results of task 4. Therefore, at the beginning of task 2 a new frequency
is calculated and used to execute the task, i.e. % = % = 2. D3 is then also be
executed with frequency g = 2. In this example the lazy behavior can be seen
better. On PU 0, firstly task 0 is running with frequency 1, then D1 with frequency
1.375 and finally task 2 and 3 with frequency 2. In Lst 4.4 the pseudo code of the

heuristic is presented.

80

Task *currenttask = NULL;
currenttask = task;

while(currenttask != NULL){
if (currenttask is an original or a duplicate that has to be executed)
totalworkload = totalworkload + currenttask->comptime;
currenttask = currenttask->next;

}

—
O O 00O Tk Wk -

newfreq = totalworkload/(makespan - task->starttime);

11| task->finishtime = task->starttime + task->comptime * task->freq/newfreq;
12| task->comptime = task->comptime * task->freq/newfreq;

13| task->freq = newfreq;

14 | task->energyconsumption = setenergy(...);

15|check if adapted properties influence position of successor tasks;

16 | check if adapted properties influence position of succeeding tasks;

Listing 4.4: Pseudo Code of LFR-heuristic.

In the beginning, a pointer currenttask is created and initialized with the task
to be considered (lines 1 - 3). Then, the total workload of all succeeding tasks that
have to be executed is summed up (lines 4 - 9). The new frequency for the task is
the total workload divided by the time until the makespan (line 10). The finish and
computation times of the task are calculated based on the new frequency (lines 11
- 12). The new frequency is saved as task frequency and the energy consumption
for the task is calculated (lines 13 - 14). Finally, the influences on successor and
succeeding tasks of the adapted task are checked and changed if necessary (lines 15
- 16).

In contrast to the EP-heuristic, that only focuses on the overhead for each du-
plicate, the LFR-heuristic only considers the total workload of a PU to find a new
frequency. Thus, neither the overhead of a task nor the dependencies between tasks

are considered.

4.3.7 Constant Power (CP)

Another approach to re-scale the frequencies of tasks in case of a failure is the so-
called CP-heuristic, demonstrated by Eitschberger and Keller [56]. This heuristic
is based on the approximation algorithm from Pruhs et al. [147] (see Sect. 3.1.2).
To obtain an energy-optimal solution, the power consumptions of all PUs are kept
constant. Therefore, the frequency of a PU is set according to the fraction of the
power budget that is related to the PU. This fraction changes with the number

of PUs that are executing tasks at the same time. While several distributions of

81

the power budget are possible that may lead to an improved energy consumption, a
simple uniform distribution of the power budget is used in this approach for all active
PUs to get a short scheduling time. Thus, neither the static power consumption nor
the total workload or the overhead are considered. When a task finishes or a new
task starts, the power budget is re-distributed over all PUs and the frequencies are
adapted. Thus, a discrete event simulation can be used, where the events (a task
starts or a task finishes) are saved in a priority queue. In this queue, the priorities
can be changed in both directions. The resulting runtime of a task is then used to
calculate an averaged frequency, because only one frequency per task is assumed.
The minimum energy consumption for a schedule is found by nested intervals with
the assumption that a lower power budget leads to a longer runtime. The nested
intervals stop if the interval is small enough. This heuristic is only considered in the
fault case.

In Fig. 4.14 the resulting schedule of the extended example explained for the
LFR-heuristic is shown by considering the CP-heuristic. In this example, a simple

quadratic power model, i.e. P(f) = f? is assumed and a power budget of 4.

6 on PU 1 Makespan

[Original task
Duplicate task

PU 2

PU 1

PU O

N

PU 2
PU 1

PU 0O
Frequency

Time (t)

Figure 4.14: Extended Example Schedule to Ilustrate the Changes by the CP-
heuristic.

82

A failure of PU 1 occurs at the end of task 1. As task 0 and task 4 are running at
this time, the frequencies of both tasks are not changed by the CP-heuristic, because
only one frequency per task is allowed. At ¢t = 4 the duplicate of task 1 can start on
PU 0. As two PUs are active at this event, the resulting frequency f for PU 0 can be
calculated by f = \/% = \/g ~ 1.414 and the new runtime of duplicate 1
results in 2.12 time units. At t = 5, task 4 is finished so that the power budget
can be completely used by PU 0 with a frequency of 2. Thus, the remaining part of
duplicate 1, i.e. (2.12—1) = 1.12 time units at frequency 1.414 can be executed with

the higher frequency. The overall runtime of duplicate 1 is then 1+ % =1.793

3
1.793

PU 0 are running with a frequency of 2, because PU 0 is the only active PU until

and the average frequency for duplicate 1 is ~ 1.673. All remaining tasks on

the end. In Lst. 4.5 the pseudo code of the heuristic is presented.

1|while(there are tasks to be executed){

2| PU = nextevent(...);

3

4| 1if(PU is not activated){ // A new task starts

5 activate PU;

6 activePUs++;

7 oldfrequency = newfrequency;

8 newfrequency = sqrt(totalpowerbudget/activePUs);

9 for(all PUs)

10 if (PU is activated and task starts after or at failure)
11 adapt remaining runtime according to the new frequency;
12 timestamp = task start time;

13| }

14| else{ // A task finishes

15 deactivate PU;

16 activePUs--;

17 oldfrequency = newfrequency;

18 newfrequency = sqrt(totalpowerbudget/activePUs) ;

19 for(all PUs)
20 if (PU is activated and task starts after or at failure)
21 adapt remaining runtime according to the new frequency;
22 timestamp = task finish time;
23 take next task on PU;
24)
25}
26
27| for(all tasks){
28| calculate average frequency according to the runtime;
29| set energy for task;
30}
31
32| calculate makespan;
33| return (makespan) ;

Listing 4.5: Pseudo Code of CP-heuristic.

83

As long as there are tasks to be executed (line 1):

e Find the PU with the next event, i.e. where the next task starts or finishes.
In the function nextevent(..) unconsidered duplicates are deleted if the
DUD-option is set (line 2).

o If a new task starts (line 4), the corresponding PU is activated and the active
number of PUs is incremented (lines 5 - 6). Then, the old and new frequencies
are set (lines 7 - 8). The tasks (after or at the failure) of all active PUs,
including the PU with the new started task are considered to change the
remaining runtime according to the new frequency (lines 9 - 11). Finally, the

time stamp is updated with the tasks’ starting time (lines 12 - 13).

e If a task finishes (lines 14), the procedure is similar to the above explained.
First, the corresponding PU is deactivated and the number of active PUs is
decremented (lines 15 - 16). The frequencies are set and the runtimes of the
active tasks excluding the finished task are adapted (lines 17 - 21). The time
stamp is set to the finish time of the task. The next task is chosen. In both
cases, i.e. a task starts or finishes, the old frequency and the time stamp are
necessary to determine the previous time interval with the old frequency for

the calculation of the remaining runtime with the new frequency.

After all tasks are completed, an average frequency for each task and the corre-
sponding energy is calculated according to the adapted runtime of a task (lines 27 -
30). Then, the makespan of the schedule is calculated and returned (lines 31 - 33).
Thus, a resulting makespan and the corresponding schedule is given.

An optimized solution can now be found by using nested intervals. Starting with

2 .
max

a maximum power budget PB,,.. = PUs, i.e. all PUs are running with the
highest frequency fy,4.. If the makespan of a schedule by using the CP-heuristic
is higher than the makespan in a fault-free case, a solution is infeasible and the
nested intervals stop. Otherwise, the mean power budget of the interval between
the maximum power budget and the minimum power budget PB,,;, = f2,, - PUs,
i.e. all PUs are running with the lowest frequency f,,;,, is chosen. Then, the interval
is halved in each step and the new mean power budget is calculated. If the makespan
is higher than the makespan in a fault-free case, the minimum power budget is set to
the mean power budget, otherwise the maximum power budget is set to this value.

The nested intervals end, when either the makespan of the schedule by using the

84

CP-heuristic m, is close to the makespan m in a fault-free case, i.e. [mq, —m| <,

where € = 0.001, or when m,, does not change anymore between two steps.

4.3.8 Option: Maximum Makspan Increase (MMI)

As the static task scheduling is done prior to execution (see Sect. 2.3.1), the makespan
is already known when the schedule starts. A crash of a PU during the runtime of
a schedule usually leads to an overhead, i.e. a makespan increase. To undo the
overhead or at least to keep it small, the tasks can be accelerated by scaling up the
frequencies as much as possible. However, a small prolongation in case of a failure
can basically be acceptable for a user. Therefore, a maximum makespan increase to
be tolerable can be set as a percentage value to restrict the overhead and thus to
scale up frequencies only in a moderate fashion. As demonstrated by Eitschberger
and Keller [56], a given maximum makespan increase in case of a failure often re-
sults in a lower energy consumption. In some cases, the energy consumption for the
faulty schedule even becomes lower than for its corresponding fault-free variant when
considering an increased makespan. This option can only be used in combination
with the two heuristics LFR and CP explained above. Otherwise, the maximum

makespan increase is set to zero percent and thus switched off.

4.4 User Preferences and Corresponding Strategies

As seen in Chap. 3, an overall solution for the trade-off between PE, F'T and E does
not exist. A solution is very situational and highly depends on the user preferences.
The focus can change for different systems and between the fault-free and fault
case. Often more than one criterion are important for a "good" solution. Next to
this fact, it is hardly possible to rate the preferences of a user in a general way
like using a percentage value for the different criteria. Instead, several strategies
should be provided by the scheduler to reflect the preferences of a user in detail.
Therefore, in this section firstly valid combinations of the above explained heuristics
and options are discussed. Secondly, combined strategies for the fault-free and fault
case are proposed. The strategies have been developed and integrated in the existing

scheduler.

85

4.4.1 Valid Combinations

The heuristics and options explained above are either related to the fault-free, to the
fault case, or to both. An overview of the relationship is depicted in Fig. 4.15. While
the option SDE/SED and the strategy UHPO are only related to the fault-free case,
BER and CBF can be used in both cases. EP, DUD, MMI, LFR and CP are only
related to the fault case, where LFR and CP can be influenced by MMI.

Fault-free case Fault case

SDE/SED .

Figure 4.15: Heuristics/Options and their Relationship to the Fault-free and Fault
Case.

As the user preferences might change between the fault and fault-free case, all
options and strategies for the fault-free case can be combined with the options
and strategies for the fault case. Therefore, only the remaining combinations are

described in the following.

SDE/SED & UHPO The UHPO-heuristic changes the initial schedule before
including duplicates or energy efficiency aspects. Therefore, the combinations SDE
<> UHPO and SED < UHPO are possible in general, but both lead to the same
schedule. When using only half of the PUs for the original tasks and the other half
for the duplicates, the placement of the duplicates is not influenced by any energy
option or heuristic and vice versa. Thus, the order of including duplicates first or

saving energy first is irrelevant for the resulting schedule.

SDE/SED & BER Whenever duplicates are placed onto PUs containing original
tasks, the order of placing duplicates and scaling down frequencies is important.

Hence, this combination is mandatory.

86

SDE/SED & CBF The insert position of a duplicate depends on the structure of a
schedule, i.e. on the distribution of gaps and on the dependencies between tasks. As
original tasks are prolonged or shortened and often shifted when changing the base
frequency, some gaps would be closed, others might arise. Thus, an initial placement
of duplicates before using the CBF-heuristic would lead to further overhead that
could be avoided when using the CBF-heuristic first. Therefore, the CBF-heuristic
has to be considered initially. Afterwards the SDE/SED-option can be used for
further savings. Hence, a combination of both is possible, but the SDE/SED-option

exclude the change of the base frequency.

UHPO & BER This combination is possible, too. First, the UHPO-heuristic is
used to re-schedule the original tasks. After that, the BER-heuristic takes place.

As explained above, the BER-heuristic has to be considered together with the
SED /SDE-option.

UHPO and CBF In general, using half of the PUs for originals and changing the
base frequency can be used together. In this case, initially the original tasks are
re-scheduled onto half of the PUs. Afterwards the base frequency is changed before
including the duplicates.

BER- & All Heuristics for the Fault Case The BER-heuristic can be combined
with all fault strategies. However, the frequencies for duplicates resulting from the
BER-heuristic are changed whenever the user focus on another direction in case
of a failure. This means: By using any heuristic, the frequencies of duplicates are

changed according to the heuristic in use.

CBF & All Heuristics for the Fault Case The CBF-heuristic can be combined
with the heuristics for the fault case analog to the BER-heuristic.

DUD & All Heuristics for the Fault Case Deleting duplicates before using other
heuristics or options in a fault case is always possible, because the DUD-option does

not influence the frequency scaling negatively.

EP & (LFR or CP) These combinations are impossible, because the heuristics
focus concurrently on the performance or the energy consumption and therefore

change the frequencies in different ways.

87

EP & MMI As the EP-heuristic scales up the frequencies of duplicates according
to the arising overhead, the makespan is neglected. Therefore, setting the MMI-

option to a value higher than zero does not change the resulting schedule.

4.4.2 Strategies Fault-free Case

The following strategies can now be obtained by using the duplicate placement
strategies, i.e. use only DDs or use Ds and DDs together with a valid combination
of the heuristics and options as described above. To provide a variety of different
preferences, several corner cases are considered. The alignment of the combined
strategies and therefore the desired user preferences are illustrated in Fig. 4.16.
Next to the new strategies also older ones (framed with dots) from the previous

work without any energy efficiency aspects are shown for comparison.

S1: DDs (previous work)
''''''' S3:DDs + (BER, SDE)
S4: Ds, DDs + (BER, SDE)
S5: Ds + (BER,SDE, UHPO)
: DDs + (BER,SDE,CBF)

Energy

Figure 4.16: Alignment of Different Strategies for the Fault-free Case.

Strategy 1 + 2: DDs, DDs + Ds (Previous Work) In these strategies, the
makespan of an initial schedule is not changed by including DDs and Ds. Thus, the
performance in both cases is high. In strategy 2 the fault tolerance is improved by

converting DDs into Ds where possible. In these strategies, the energy consumption

88

is not considered. Both are only related to the performance and the fault tolerance.
Therefore, with these strategies the main focus lies on the performance and secondly

on the fault tolerance.

Strategy 3: DDs + (BER, SDE) This strategy is a combination of the first
one, i.e. use only DDs with the BER-heuristic and the SDE-Option. Therefore, the
DDs are placed before using any buffers to slowdown tasks by scaling down the
frequencies. The performance and the fault tolerance are equal to strategy 1. But
the energy consumption is decreased by using the BER-heuristic. Thus, with this
strategy the user mainly focuses on the performance and secondly on the energy
consumption. The fault tolerance is considered, but should not influence the other

criteria.

Strategy 4: Ds, DDs + (BER, SDE) Instead of using only DDs to improve
the fault tolerance, here Ds are used, too. Thus, the performance is still the most
important criterion, but energy is invested to get a better fault tolerance. Therefore,
with this strategy the user would like to compensate (partly) the energy spent for
the fault tolerance by slowing down tasks and reducing the energy consumption with
the BER-heuristic.

Strategy 5: Ds + (BER, SDE, UHPO) In strategy 5, the second strategy is
combined with the BER-, UHPO-heuristic and the SDE-Option. The main focus
lies on the fault tolerance, i.e. half of the PUs are used for duplicates, the other half
for original tasks. However, the performance is significantly decreased because tasks
have to be re-mapped onto fewer PUs and the energy consumption is significantly
increased, because the whole schedule is executed twice. Only a small benefit can
be gained by using the BER-Option.

Strategy 6: DDs + (BER, SDE, CBF) To achieve a low energy consumption,
the base frequency of tasks is changed and only DDs are used for the fault toler-
ance. The performance is significantly decreased. Additionally, the BER-heuristic is
considered, to further reduce the energy consumption. Hence, the main focus of the

user is put on the energy consumption and only a minor part on the other criteria.

89

4.4.3 Strategies Fault Case

In the fault case, only energy consumption and performance have to be considered,
because only one failure per schedule is assumed. To compare all strategies in the
fault case, all heuristics are combined with the first strategy, i.e. using only DDs. In

Fig. 4.17 the alignment of the combined strategies in the fault case are illustrated.

[0 S7: DDs + EP
[S8: DDs + (MMI, LFR)
[S9: DDs + (MMI, CP)

aa>

Performance

Figure 4.17: Alignment of Different Strategies for the Fault Case.

Strategy 7: DDs + EP In this strategy, the main focus is put on the perfor-
mance. Duplicates are speeded up whenever an overhead arises. Additionally, the
energy consumption is considered as duplicates are slowed down where possible. The

strategy is advantageous for schedules with strong dependencies between the tasks.

Strategy 8: DDs + (MMI, LFR) Strategy 8 focuses on the energy consump-
tion. The workload of each PU is considered separately. But in several cases the
performance is decreased, because the frequencies are often chosen too low in the
beginning, so that an overhead cannot be compensated in the end by using higher

frequencies. A maximum makespan increase can be set to allow a performance loss.

Strategy 9: DDs + (MMI, CP) The focus of this strategy is also put on the
energy consumption, but in contrast to strategy 8, the performance is kept con-

stant. Therefore, the energy consumption is usually higher than using strategy 8.

90

This strategy is advantageous for schedules with a uniform distribution of the to-
tal workload. A maximum makespan increase can be set to improve the energy

consumption.

4.5 Energy-optimal Solutions and Approximations

When the focus is put on the energy, an energy-optimal solution would be preferable.
As the scheduling time for optimal solutions is disproportionally high compared to
the energy savings, heuristics like the above explained are often used in practice.
However, energy-optimal solutions (calculated at least for small schedules) can be
used to rate the quality of the heuristics. Therefore, as demonstrated by Eitschberger
and Keller [56], a mixed integer linear program (ILP) formulation is described as
follows to compute energy optimal solutions in both the fault-free and the fault case.
For simplicity, a quadratic power model is assumed, i.e. P(f) = f? for a frequency f,
but also other power profiles are possible. Additionally, in case of a failure another
alternative is to re-schedule the remaining part of the schedule [56] instead of using
the pre-calculated mapping and ordering. Hence, an approximation and an optimal
solution for the approaches is described for the fault case, i.e. using the existing

mapping and using the re-scheduling approach for comparison.

4.5.1 Fault-free Case

To schedule n tasks onto a target system with p PUs and K frequency levels f,
n - p - K binary variables x;;; are needed with z;;, = 1 if and only if task 7 is
scheduled onto PU j with frequency level k. The energy consumption of a task ¢
running at frequency level fi is then the product of task runtime r; and the power

consumption P(fy):

E; = szm -1 - P(fx)- (4.1)

The runtime of a task at frequency level f; depends on the task workload w; and

can be expressed by

ri = Z in’j’k : % (42)
J k

The total energy consumption of a schedule for a given deadline DI can then be

obtained by summing up the energy consumption of all tasks (assuming that the

91

idle power and therefore the energy for all idle times is neglected for simplicity).

Thus, the target function to be minimized is
E=>E,. (4.3)

The following constraints are used to obtain feasible solutions. Each task must
be scheduled within the deadline. Hence, the start time s; of a task ¢ must be at

least zero and its end time e; = s; + r; is not larger than the deadline:
Vi:s; >0 and e; < DI. (4.4)

Each task must be mapped exactly once in the schedule:

Vi) > wige=1 (4.5)
k

J

To indicate whether task i precedes task i’ or not, n? binary variables y; » are used
with y; » = 1 if and only if task i precedes task i on a common PU. Then task 4’

can only start after task i, i.e.
Vi,i/ Sy Z €, — (1 — yz‘,i’) . O, (46)

where C' is a constant larger than DI, e.g. C' = 2- DI. When both tasks are mapped
onto the same PU and ¢ precedes ', y; » = 1 and the right-hand side of this constraint
results in e;, otherwise the right-hand side is smaller than zero.

A task i can not precede itself, thus

Either two tasks ¢ and 7' are succeeding tasks on a common PU so that one of
them precedes the other one, or they are mapped onto different PUs. However, both

can not precede each other:

Vi, i/ “ Vi + Yit 4 < 1. (48)

92

Two tasks i and 7’ can only be succeeding tasks, when they are mapped onto the

same PU, i.e.

Vi i' #i,5yiw +yrs > —1+ Z(xi,j,k T k) (4.9)
k
The right-hand side either results in 1, when both tasks are on PU j and thus the
right-hand sum is 2, or it results in a value less or equal to zero, i.e. one or both
tasks are mapped onto another PU.
When two tasks ¢ and i’ are mapped onto different PUs, they can not be succeeding

tasks, i.e. the variable y; ;» is then forced to zero:

Vi, i/ 7£ 7 yi,i’ S 2 — Z Z<J;i’j’k —+ xz”,j’,k)- (410)

»i'#k

To consider dependencies and communication times between tasks, the following
constraint is necessary: If task ¢’ is a successor task of task 7, i.e. an edge exists
between both tasks in the task graph, and both are mapped onto different PUs,
then the communication time ¢; ;; between them must be considered and task ' can
start after the communication. When the tasks are mapped onto the same PU,

task i can only start after task i:
Vi, i’ edge (i,i') : sy > e+ (1 —yiwr) - Ciar- (4.11)

In this constraint (1 —y; ;) ensures that the communication time is only considered,

when both tasks are not mapped onto the same PU, i.e. yi,i = 0.

4.5.2 Fault Case

A failure of a PU can occur at any time during the execution of a schedule. To have
a small finite number of failure points, only one failure per task is considered. The
longest delay for broadcasting a failure is when it occurs at the beginning of a task,
because the remaining PUs are informed about the failure by the missing commit
message. In the fault case, optimal solutions for the already existing mapping can
be calculated for each failure point. Then, the optimal schedules can be used to
evaluate the fault case heuristics, as they use the already existing tasks (originals and
duplicates) and only change the frequencies and the start times of tasks dynamically,

but not the ordering or the mapping. As a general placement of duplicates cannot

93

be optimal for each fault case, they have to be placed in different ways depending
on the failure position to get an optimal solution. Therefore, another approach is
to re-schedule the tasks in case of a failure onto the remaining p — 1 PUs, instead
of running on p PUs. This can be done statically prior to execution for each failure
position, i.e. for each original task that fails. Then, the execution time of a schedule
is not influenced by the scheduling time and a corresponding runtime system can

choose the optimal schedule according to the failure point.

Existing Mapping To find an optimal solution for the existing mapping, only the
dependencies and communication times must be considered next to end times of
tasks. Therefore, an explicit declaration of PUs is unnecessary in this case. To
formulate an ILP the energy consumption for a task ¢ can be expressed by:

E = P(f)- 4 (4.12)

f

where P(f) is the power consumption at frequency f and w; is the workload of
task . Now, an approximation close to an optimal solution can be obtained by
using n - K binary variables z;; for n tasks and K frequency levels f; each with
x;, = 1 if and only if task 7 is executed with a frequency level f;. A frequency range
between 0.1 and 2 with a step size of 0.05 is used. The energy consumption for a

schedule can then be expressed by:

-EZE:E:%ﬁ”W"TgX (4.13)
) k

The end time e; of an ending task ¢ must be less than or equal to the deadline:

Vi = ending task : e; < DI. (4.14)
The end time e; of an entry task ¢ is at least the runtime of the task, i.e.
w;

Vi = entry task : e; > lek . f_ (4.15)
k
k

Only one frequency level can be used for each task, thus

Vi) mi=1 (4.16)
k

94

A task i can only be started after all predecessor tasks i’. If a predecessor 7' is
mapped onto another PU, the communication time ct;; can be directly included
as a constant, otherwise it is set to zero. Then, the end time e; of a task can be
expressed by

Vi : Vi’ € pred(i) : e; > Za:,k VW +cty i+ e (4.17)
T,

Note, that this constraint is set for every predecessor task explicitly to fix the map-
ping and ordering of the tasks, e.g. if a task has three predecessors, this constraint
is included three times.

As only the time between the failure point and the deadline is considered in the
ILP, all tasks that start before and finish after the failure are cut at the failure time
and the remaining part after the failure is included as workload. For these tasks,
the frequency level f, is fixed by setting x;; = 1, because only one frequency per

task is allowed.

Re-scheduling An optimal solution for the re-scheduling in case of a failure can be
achieved by modifying the above explained mixed ILP for the fault-free case. For all
tasks that start before the end of the failing task, the mapping, frequencies and start
times and thus the z- and s-variables in the mixed ILP are fixed. As the duplicate
of the failing task can only be started after its corresponding original task, the start
time of the duplicate is bound by the end time of the failed original task. The faulty
PU cannot be used after the failure and all remaining tasks cannot be mapped onto
the faulty PU. This is considered by forcing the corresponding x-variables to zero.
The MMI-Option, i.e. when a prolongation of a schedule is allowed, can be included

by changing the deadline according to the given percentage value.

95

96

5 A Fault-tolerant and
Energy-efficient Runtime

System

RUPS (Runtime system for User Preferences-defined Schedules) is a scheduling tool
for grids, clusters, multicore and manycore systems with features allowing the user
to input various preferences in the schedule. Such preferences are for example:
Performance, energy consumption or fault tolerance. Schedules are then created
with the RUPS tool — optimized for the user-defined preference in question. RUPS

consists of four main parts illustrated in Fig. 5.1.

System check SChed}ﬂe Runtime
creation system

Processor

Figure 5.1: Overview of RUPS.

The processor details are extracted in Part 1 and passed to the scheduler (Part 3),
which in turn optimizes the schedule based on the processor parameters and the user
preferences (Part 2). Finally, the complete schedule is passed to the runtime system

(Part 4), and scheduled on the parallel system. As the schedule creation and the

97

user preferences are already described in detail (see Chap. 4), in the following only
the system check tool (Sect. 5.1), the runtime system (Sect. 5.2) and an appropriate

power model for a real system (Sect. 5.3) are explained.

5.1 System Check Tool

At the first use of RUPS on a particular system, it has to be initialized once with
the system check tool to adjust the power model for the processor used. This
tool detects the number of processor cores. If a Turbo-Boost mode is activated,
it calculates the corresponding turbo frequencies for a different number of cores.
CPUFreq only indicates the activated Turbo-Boost mode but does not show the
exact frequencies. Then, the tool measures the power consumption of the processor
for different frequency /core settings. The number of settings depends on the number
of cores C' and the number of supported frequencies F. Each core is either considered
to be in idle mode (inactive) or under full load (active) at a given frequency.

A binary representation is used to differ between active and inactive cores where
digit d; represents core ¢;. If d; = 1 the core is active otherwise it is inactive. Thus,

there are in total F - 2!l cases. Tab. 5.1 shows the organization of the settings.

Table 5.1: Settings for a Processor with Four Cores and F' Frequency Levels.

Freqg-lvl | cores status
C3C2C1C
1 0000 | All cores are inactive at frequency level 1
1 0001 | Only coreg is active at frequency level 1
1 0010 | Only corep is active at frequency level 1
1 1111 All cores are active at frequency level 1
F 0000 | All cores are inactive at frequency level F
F 0001 | Only coreg is active at frequency level F
F 0010 | Only core; is active at frequency level F
F 1111 All cores are active at frequency level F

The tool creates C' pthreads, one for each core, and binds them to the different
cores. To simulate an active core under full load, in total six micro benchmarks are

used in a time-controlled while-loop, where each benchmark represents a different

98

class of instruction mix: ALU- (Arithmetic Logic Unit), FPU- (Floating Point Unit),
SSE- (Streaming SIMD Extension), BP- (Branch Prediction), RAM-intensive and a

mixed variant. In Tab. 5.2 the different benchmarks are described.

Table 5.2: Different Benchmark Settings.

Benchmark Description
1. ALU-intensive An integer variable a is initially set to 0.
In each loop step the variable is incremented by 1.
2. FPU-intensive Three double variables b, ¢, d are initially set to:

b=15,¢c=35and d=0.
In each loop step d =b/c, b= b+ 0.01 and ¢ = ¢+ 0.01.

3. SSE-intensive Realized with intrinsic functions that are built into and
handled by the compiler to get processor-specific functionality.
In each loop step the function y = sin(z)/z is calculated
with 4 float values in parallel.

4. BP-intensive Two int variables k, sum are initially set to 0.
In each loop step sum is incremented by 1 if((k&2) == 0),
then k is incremented by 1.

5. RAM-intensive Array[size 109], initially set to index.
Array elements added up in the following order:
(7 -index + rank) mod array _size.

6. Mixed In each loop step, benchmarks 1 - 5 in sequence.

A barrier is used before and after the while-loop to synchronize the threads.
Threads of inactive cores directly wait in the barrier after the while-loop. The main
thread itself is used to measure the power consumption. The power consumption is
measured for 10 s (seconds) with a sampling rate of 10 ms (milliseconds). All cases
are repeated five times to compensate high power values that could occur due to
unexpected background processes. Between each case, all cores are set to the lowest
frequency in idle mode for five seconds to reduce the rise in temperature of the
processor and the influence on the power consumption. Then, the averaged results

of the measure points for each case are used as values for the power model.

5.2 Runtime System

The runtime system is based on ULFM-MPI, a fault-tolerant extension of Open MPI
(see Sect. 2.4.4). ULFM-MPI is used to support the error handling of MPI-processes
in general. The execution of a schedule and the detection and handling of a failure

during the execution is given by the runtime system. For each core, an MPI-process

99

is created that binds the process to a specific core and sets the userspace governor
and the frequency of the core to the lowest possible!. Then, it reads the schedule and
task graph information from files and creates a task queue that is sorted according
to the starting times of the tasks to be executed. After a barrier to synchronize the
work, a while-loop is executed as long as there are tasks in the queue. The loop is
used for a polling mechanism that reacts and handles the communication, starts a

task if possible, and aborts a task if necessary. Fig. 5.2 illustrates a short overview
of the runtime system.

< messages >

Figure 5.2: Overview of the Runtime System.

Within one loop round the following steps are done (see Lst. 5.1):

1|while(there is still a task in the queue){

2| sleep for 10 ms;

3| leftouttasks(...);

4| trytoreceivemessage(...);

5| if(there is no thread spawned){

6 checkmessages(...);

7 spawnthreadifpossible(..); //and scale the frequency up
8| ¥

9| trytoreceivemessage(...);
10| if(thread exists)
11 abortthreadifnecessary; // and scale the frequency down
12| if(thread is finished){
13 scale frequency down;
14 sendmessagesifnecessary;
15 take the next task in the queue;
16| ¥
171}

Listing 5.1: Pseudo Code of the Runtime System.

!Hyper-threading is not considered in this runtime system and must, therefore, be switched off
in the BIOS.

100

e The core sleeps for 10 ms to minimize the polling overhead (line 2).

e [t is checked whether a task can be left out, e.g. a duplicate that could start
next but that already received a commit message from the original task. In

this case, it does not have to be executed (line 3).

e A message is tried to receive, that can mainly include either some results
of another task or a commit message for a duplicate. In this version of the
runtime system, just the message header is sent as results. The message header
includes, next to others, the information about the task for which the message
is destined, what kind of data will be sent, how much memory is needed for the
data, the start time of the sending operation and the time that is needed for the
transfer. The latter two are used to simulate the transfer. The communication
is done on the sender side with a blocking MPI_send operation, on the receiver
side with an unblocking MPI_iProbe to check if there is a message for the core.
If so, a blocking MPI_recv operation is used to receive the message. Thus, the
sender is blocked as long as the message is not sent, the receiver is blocked
only if there is a message for it. Otherwise, it can continue with the remaining

part of the while-loop (line 4).

e If no other task is running and if all results of the predecessor tasks are al-
ready received, the frequency is scaled up and the task is started by spawning a
thread. To simulate an expensive calculation one of the six micro benchmarks
from Sect. 5.1 is used for the computation time of the task. The task execution
is separated from the communication process by a thread (see Fig. 5.2) so that
the structure of a task is independent of the communication. Especially the
runtime system lacks information about the task itself and about the functions
that are done within the task. Thus, it could be impossible to interrupt the
task execution at some points for trying to receive some messages. Further-
more, one thread is used for each task and not one thread for all tasks. The
tasks on one core are executed one by one so that at each time just one thread
or task is running. Another possibility would be to spawn only one thread for
all task executions, but then a task cannot be aborted if necessary because
some polling mechanism would be needed again that cannot be included in
the task because of the missing knowledge of the task structure. Two flags are
used to indicate whether a task is running or not and if a task has just finished

(lines 5 - 8).

101

e After this the process once again tries to receive a message. This is necessary
to avoid deadlocks that could appear if two cores try to send a message to
cach other (line 9).

e If a task is already running and if it is a duplicate, check if the duplicate has
to be aborted because of a receiving commit message from the original task.
If a duplicate should be aborted, the corresponding thread is canceled and the

frequency is scaled down to the lowest possible (lines 10 - 11).

e Otherwise, it is checked if the thread has finished, the frequency is scaled
down to the lowest possible and the results are sent to the successor tasks if

necessary (lines 12 - 17).

After the while loop a second barrier is used to indicate that the schedule execu-
tion is finished. To implement the runtime system in an energy-efficient way, it is
important that some MPI-operations like a blocking receive or a barrier use a busy
waiting mechanism. If an MPI-process is running in those operations for a longer
time, the corresponding core wastes energy because it is under full load for this time.
Thus, those operations should be used carefully. Therefore, in this runtime system
an MPI_iProbe is used before every blocking receive. Also the second barrier after
the while loop is realized in this way.

The runtime system supports a testing mode, where one additional MPI-process
is started next to the above sequence to measure the energy consumption with the
help of the Intel RAPL feature (see Sect. 2.5.4). The measurement process measures
the energy for the time of the whole while loop, because this is the time needed for
the execution of the total schedule. The sample rate of the measurement is 10 ms.
This process is not bound to a specific core like the other processes, so it can run on
any core. There are some performance and energy overheads that occur by running
the testing mode with the further process. But the influence can be neglected for
two reasons: The energy overhead is included in the measurements of the system
check that are done by a master thread. Thus, the energy values for the power model
consider this overhead. And the performance overhead is less than one percent of a
processor core. Therefore, the influence on the task execution is low.

Until now, the runtime system is described in general but not, how a failure of a
PU (here a PU represents a processor core) can be handled. A failure is simulated
by exiting an MPI-process just before the corresponding task is started, i.e. in the

function spawnthreadifpossible(). The other processes are informed about the

102

failure by an error handler that is connected to the communicator and is involved
if a message cannot be received. The MPI_iProbe operation checks messages from
any source and with any tag. This means, a failure is nearly directly identified from
all remaining MPI-processes. The time delay is less than 10 ms because messages

are tried to be received two times per loop round.

5.3 Power Model

To predict the energy consumption for a schedule, an appropriate power model for
the processor is necessary. In general, the power consumption can be subdivided
into a static part, that is frequency-independent and a dynamic part, that depends

both on the frequency and on the supply voltage.

Pprocessor = Pstatic + denamic (51)

The static power consumption consists of the idle power P,y and a device specific

constant s, that is only needed when the processor is under load.

Pigie + s + Pyynamic if under load,
Pprocessor - « w (52)
Pae else.

The dynamic power consumption is typically modeled as a cubic frequency func-
tion |7]. Additionally, the supply voltage and thus the dynamic power consumption
depends on the load level of a core. As only fully loaded cores are considered or
cores that are in idle mode (at the lowest frequency) the influence of a load level
can be given by a parameter w € {0,1}. If a homogeneous multicore processor with
n cores is assumed, a simple power model for the dynamic part can be given by the
following equation, where a, b and [are device specific constants, ¢ is the core index

and fe,; is the current frequency of core i:

n—1
denamic = Z wy - 5 (fcur,ig +a- fcur,i2 + b- fcur,i) (53)
=0

Only if a core runs at a higher frequency under full load, the dynamic part of the

power consumption for the processor is considered.

103

104

6 Experiments

6.1 Test Environment

6.1.1 Test Sets

To evaluate the heuristics and strategies presented in Chap. 4, a benchmark suite of
36,000 synthetic task graphs and schedules for small cases with up to 24 tasks and
36,000 task graphs for large cases with up to 250 tasks is used [84]. The task graphs
are subdivided into several groups according to their properties. As the organization
of the benchmark suite for small and large cases differs in the intervals of task count
only, the structure is described for both together. One property is the size of the
target system that is considered by the number of PUs. In total 5 groups exist with
2,4, 8,16 and 32 PUs and with 7,200 task graphs each. Every group is categorized
by the number of tasks into 3 subgroups: 7 - 12, 13 - 18 and 19 - 24 tasks for the
small cases and 25 - 99, 100 - 174 and 175 - 250 tasks for the large cases. In each
interval 2,400 task graphs exist that are further subdivided by the edge density in
low, average, high and random. Each of these groups contains 600 task graphs that
are further differentiated by the edge length into short, average, long and random.
The remaining 150 task graphs per group are finally subdivided by the edge and
node weights into 5 groups with high node/high edge, high node/low edge, low
node/high edge, low node/low edge and random node/random edge weights. In 4 of
these groups are 25 task graphs each. The group of random node and edge weights
consists of 50 task graphs. In general, the benchmark suite is organized as a flat
file database, where the structure is given by the directory tree [84]. The principle
organization is shown in Fig. 6.1.

Based on the task graphs for small cases, two schedule sets with performance
optimized schedules are used that were generated by Honig [84]. Both schedule sets
comprise nearly 34,000 schedules each, because for some task graphs no optimized
solution was found. The first schedule set, called TB-Optimal (Test Benchmark),

comprises performance optimal schedules. These schedules were generated with a

105

Number of

test cases
Number of PUs | | | | 36.000
2 PUs 4 PUs 8 PUs 16 PUs 32 PUs
I | | |
I [[I || I Il I |
Number of tasks | | 7,200
7-12 13 -18 19 -24
(or 25 — 99 tasks) (or 100 — 174 tasks) (or 175 — 250 tasks)
Edge density | | | | 2,400
low average high random
/_V_LV_V | |
1T T 1 1T T 1
Edge length
shlort avefage long random
FTT T 10T T T ‘
Node and edge | | | | | 150
weights . .
high nodes high nodes low nodes low nodes random node and

high edges low edges high edges low edges edge weights
(25 test cases) (25 test cases) (25 test cases) (25 test cases) (50 test cases)

Figure 6.1: General Organization of the Benchmark Suite [44][84].

PDS-algorithm (Pruned Depth-first Search). To find optimal solutions in an accept-
able time, the search space is reduced by pruning selected paths in the search tree.
The second schedule set with performance optimized schedules, called TB-ACO, is
based on the ACO-algorithm described in Sect. 2.3.1.

Next to the performance optimized schedule sets, non-optimal schedules were
generated for both the small and large cases by using the simple list scheduler
described in the UHPO-heuristic without the restriction to half of the PUs (see
Sect. 4.2). The scheduler assigns tasks to PUs, where they can start their execution
first. The schedule set for the small cases is called TB-SLS (Simple List Scheduler),
the set for the large cases is called LTB-SLS (Large Test Benchmark).

All task graphs and schedules are given and generated in the STG-Format (Stan-
dard Task Graph) and SSF (Standard Schedule Format) described by Kasahara!
[100] and by Honig [84]. In this work, the resulting SSF-files are extended by two
columns for the information about the used frequency levels or computation rates
and for the task types (original, duplicate or dummy duplicate). Additionally, two

example schedules from real world applications are used. The first one is a task

'Hironori Kashara is a Professor of the Advanced Computing Systems Laboratory from the
Waseda University in Tokyo.

106

graph for robot control, i.e. for the calculation of Newton-Euler dynamic control for
a 6-degrees-of-freedom Stanford manipulator [100]. The second one is a task graph
for a sparse matrix solver of an electronic circuit simulation [100]. Both task graphs

are depicted in Fig. 6.2.

@ ‘9 '@ ‘0 ‘@ .
© ~° e/ ‘e
7 e
1 -2

Figure 6.2: Taskgraphs of Real Applications, Robot Control (left) and Sparse Matrix
Solver (right) [100].

6.1.2 Test Systems

The simulations are done on a Core-i7 Sandy-Bridge processor system with the
operating system Windows 7. As compiler MinGW and for optimal solutions the
solver CPLEX 12.7.1 are used. The system consists of 8 GB (GigaByte) RAM and
2 x 500 GB hard disk drives set up as RAID 1 (Redundant Array of Independent
Disks) system.

The prototype runtime system presented in Chap. 5 has been tested on three

different platforms:
1. Intel i7 3630qm Ivy-Bridge based laptop
2. Intel i5 4570 Haswell based desktop machine

3. Intel i5 E1620 Haswell based server machine

107

On all three platforms the operating system Linux Ubuntu 14.04 LTS is installed.
Additionally, OpenMPI/ULFM-MPI, CPUFreq, and PAPI are used to execute the
schedules, scale the frequencies and measure the power consumption. Further exper-
iments are done based on the power model for these systems described in Chap. 5.

Next to the three systems that can be used for grid computing, also experiments
are done based on a power model for Intel’s SCC (Single-chip Cloud Computer)
as an example manycore system. The SCC consists of 48 cores that are organized
in 24 tiles with two cores each. The tiles are interconnected by an on-chip 6 x 4
mesh network that also connects the cores to four memory controllers (MCs). For
DVFS, the cores are grouped into 24 frequency islands, one for each tile and 6
voltage islands that include 4 tiles each. The memory controllers and the network

are separate frequency islands [92|. The general structure is shown in Fig. 6.3.

SCC package

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

R

VRC System
Interface

Figure 6.3: Structure of the Intel SCC [92].

6.2 Experiments with a Generalized Power Model

All strategies were evaluated with a generalized power model P(f) = ¢+ f? (see
Sect. 2.5.2) by simulating the execution of the schedules in the fault-free and fault
cases with the integrated simulator. For simplicity, the static power consumption is
left out and thus ¢ = 0. As no frequencies are considered in the classical scheduling,
the initial schedules in the test sets are assumed to be executed with a normalized

frequency frorma = 1. In these schedules, the power consumption of idle times

108

and tasks is assumed to be equal. This is a simplification as in a real system the
power consumption of a fully loaded PU is higher than the power consumption of an
idle PU at the same frequency. For the strategies S3 to S9 a continuous frequency
scaling is assumed with a frequency range between fipest = 0.1 and frighest = 2.
The idle frequency in these strategies is set to fiowest- In the strategies S1 and S2
the idle frequency is set to 1, as the strategies do not use any frequency scaling. As
all frequencies are relative values, no units are given for the frequencies and for the
energy consumption.

In the remainder of this section, firstly the strategies for the fault-free case are
evaluated and analyzed separately in Sects. 6.2.1 to 6.2.4. After a comparison of
all strategies for the fault-free case (S1 to S6) in Sect. 6.2.5, investigations of the
strategies for the fault case (S7 to S9) are done in Sects. 6.2.6 and 6.2.7.

6.2.1 Strategies S1 & S2

The strategies S1 and S2 from the previous work (see Sect. 4.2.1) are analyzed
together, as in both strategies no frequency scaling is considered and all tasks and
idle times are executed with the same frequency 1. The strategies were evaluated
with the test set TB-Optimal. Fig 6.4 depicts the averaged results over all schedules.
For all schedules the energy consumption for the fault-free case and for the fault case
(averaged over all failure points) are calculated. Also the performance in the fault-
free case and the performance in case of a failure (rated as fault tolerance) is given.
To be independent from the makespan of the schedules, the overhead results are
given as relative values to the corresponding values of the original schedules without
any changes. Therefore, in all figures of this type a negative overhead represents an
improvement, a positive overhead represents an impairment.

We start with the energy consumption in the fault-free case. In both strategies,
the energy overhead is expected to be 0, because DDs are placed with runtime 0
and thus with energy consumption 0 and the energy consumption of Ds is equal to
the energy consumption of corresponding idle times. In case of a failure, in contrast,
the energy consumption for both strategies should be lower than for the fault-free
case, because the efficiency of the used PUs is lower than 100% as dependencies and
communication times must be considered. Thus, the energy consumption is expected
to be improved in the fault case (i.e. a negative energy overhead is expected), because
then less idle times exist as the remaining tasks after a failure of a schedule are

executed on p — 1 PUs. In Fig. 6.4, the energy consumption in strategies S1 and

109

60.00%
50.00% +——
40.00% +——
3 Energy
'g 30.00% +—— I — Energy fault case
6 Performance
20.00% +—— Fault-tolerance
10.00% +—— — I
0.00% :
S1 S2

Figure 6.4: Overheads of Strategies S1 & S2.

S2 is significantly increased by 55.43% in the fault-free case (yellow bars). In the
fault case (orange bars) the energy increase is 51.79% for strategy S1, and 50.12%
for strategy S2.

This fact results from the mapping of the Ds and DDs in both strategies. As in
the previous work the focus is put on the performance for both the fault-free and
the fault case and the energy is neglected, the best solution is to place duplicates
not only onto PUs with original tasks but also onto additional PUs that are already
available in the initial schedules (but not in use). Especially for schedules with a
high number of PUs, i.e. for 8, 16 and 32 PUs usually several PUs are left free in the
TB-Optimal test set (with only up to 25 tasks per schedule). As unused PUs are
considered to be in a sleep mode with a very low neglectable energy consumption or
to be switched off totally, the energy is significantly increased by placing duplicates
onto these PUs.

In Fig 6.5 the results are shown, when unused PUs are not considered for placing
duplicates. As expected, no energy overhead in a fault-free case exists and an energy
improvement in case of a failure.

The performance overhead in the fault-free case is as expected 0% (and therefore
no blue bars exist). The performance overhead for the fault case in Fig. 6.4 is 26.36%
in strategy S1 and 22.65% in S2. Thus, the use of Ds already in the fault-free case
(S2) leads to a nearly 4% better performance in case of a failure. Compared to the
results in Fig. 6.5 where the performance overhead in the fault case is at 27.83%
(S1) and 25.88% (S2), the performance is improved by up to 3% when using free
PUs for the mapping of duplicates (but with the cost of additional 50% energy).

110

60.00%

50.00%

40.00%

30.00%

Energy

Energy fault case
20.00% gy

Performance

Overhead

Fault-tolerance
10.00% —

0.00%

S1 ' S2

-10.00%

-20.00%

Figure 6.5: Overheads of Strategies S1 & S2 without Using Free PUs.

Therefore, with the assumptions made in the beginning, duplicates should better be
placed onto PUs that were already in use in the initial schedules when no frequency

scaling is possible.

6.2.2 Strategies S3 & S4

The strategies S3 and S4 are extended versions of the strategies S1 and S2 where
energy efficiency is included by the BER-heuristic (see Sect. 4.4). Additionally, the
idle frequency that is used for the gaps within the schedules is set to the lowest
possible frequency fiowest- In Fig. 6.6 the results of strategies S3 and S4 for the
TB-Optimal test set are shown.

In strategy S3, the energy consumption can be improved by around 40% (40.74%
in the fault-free case and 39.52% in the fault case) compared to the original schedules.
Since the energy consumption for idle times is very low compared to the energy
consumption of tasks?, the idle times have only a small influence on the total energy
consumption of a schedule. Therefore, the effects on the energy are also negligible
by the use of free processors for the placement of duplicates in the fault-free case.
In contrast, the slightly higher energy consumption in case of a failure compared to
the fault-free case results from a non-optimal placement of duplicates that leads to

more and longer gaps after the failure.

2Now the idle frequency is set to 0.1.

111

40.00%

30.00%

20.00% —

10.00% —

Energy
0.00%

S3 ’ S4 ’ Energy fault case
-10.00% +— I — Performance

Overhead

Fault-tolerance
-20.00% +—

-30.00% +—

-40.00% +—

-50.00%

Figure 6.6: Overheads of Strategies S3 & S4.

The performance overhead in case of a failure is at 28.16% and therefore slightly
increased compared to S1 from the previous work (26.36%). This performance over-
head increase of further 2% results from using lower frequencies for original tasks
and thus from delayed starting duplicates that influence the makespan only in case
of a failure.

The energy improvements of 21.16% for the fault-free case and 29.52% for the
fault case in strategy S4 are lower than in strategy S3 because in S4 several Ds are
partly executed but then not longer needed and aborted (in both the fault-free and
fault case). In contrast, as Ds start earlier than DDs, the performance overhead of
23.56% in S4 is improved compared to S3 (28.16%) in the fault case.

Energy distribution and Scaling In the experiments above, no differentiation
between energy improvements resulting from the low idle frequency and from the
BER-heuristic in S3 and S4 were made. Also the influence of different task mappings
and a different number of tasks was not considered. In order to obtain the energy
distribution and the scaling behavior, both strategies were also evaluated with the
test sets TB-ACO, TB-SLS and LTB-SLS. In Fig. 6.7, the results of the energy
improvements for the different test sets are depicted, where the light parts of the
bars represent the improvements from the low idle frequency and the dark parts the

improvements from the BER-heuristic.

112

100.00%

80.00%
>
g TB Opti
g ptimal
[}
2 60.00% TB ACO
‘% - TB SLS
: [LTB SLS
80 40.00% T e
g i
=
=

20.00% |

0.00% ' '
S3 S4
Strategies

Figure 6.7: Energy Improvements for Different Test Sets.

As expected, the energy improvements for S3 with 40% to 58% are significantly
higher than for S4 with 21% to 46%, because in S4 Ds are placed next to DDs that
lead to less idle times and possibilities to scale down the frequencies for tasks. Most
of the energy improvements with up to 53% (LTB-SLS) result from using a low idle
frequency. By using the BER-heuristic, additional 4% to 6% can be saved.

Optimal vs. Non-optimal Solutions As in strategy S3 the focus is mainly put
on the energy, a comparison to energy optimal solutions is important to analyze the
quality of this strategy. Therefore, 200 random task graphs (and schedules from the
TB-Optimal test set) were used to calculate the energy improvements for different

optimal and non-optimal solutions. In Tab. 6.1 all approaches are shown.

Table 6.1: Different Approaches to Integrate Frequency Scaling into Scheduling.

Classical Scheduling ‘ Frequency Scaling

1. combined optimal

2. optimal optimal

3. optimal non-optimal (S3)
4. | non-optimal (SLS) | non-optimal (S3)

Firstly, energy optimal schedules are generated by combining the scheduling of the

tasks with frequency scaling in one step. The schedules are calculated by the mixed

113

ILP for the re-scheduling variant described in Sect. 4.5. As deadline the makespan of
each performance optimal schedule is assumed. Therefore, this solution is the most
energy-efficient one without increasing the makespan. Secondly, energy optimal
schedules are generated by separating the classical scheduling from the frequency
scaling. In this variant, the mapping of the already existing performance optimal
schedules is used and in a second step the frequencies for all tasks are optimized
by the mixed ILP for the use existing mapping variant described in Sect. 4.5. As
in strategy S3 the scheduling and frequency scaling is also separated, this solution
directly demonstrates the potential in an optimal case. Thirdly, strategy S3 is used
with the performance optimal schedules. Thus, in this variant a heuristic is used to
scale the frequencies of tasks instead of an optimal scaling. Finally, also a solution
is calculated, where the classical scheduling is done by the simple list scheduler
described in the beginning of this chapter. To make this solution comparable to
the others, the resulting makespan of a schedule must be adapted by increasing the
base frequency for the whole schedule. Therefore, after the scheduling is done, an
optimal base frequency for all tasks (and idle times) is calculated so that the tasks
are speeded up and the makespan is equal to the performance optimal makespan
from the TB-Optimal test set. In some cases, a solution can be infeasible when
a base frequency is required that is higher than the highest supported frequency
of 2. Then, strategy S3 is used again to optimize the frequency for each task.
Therefore, this solution shows the results when using a non-performance-optimal
scheduling and a heuristic for the frequency scaling. The generic approach to use a
non-optimal classical scheduling and an optimal frequency scaling is left out, because
it is an untypical and unrealistic scenario. But the energy improvement for this case
is expected to be higher than for a non-optimal scheduling with S3 and lower than
for an optimal scheduling with S3. In Fig. 6.8 the energy improvements relative to
the corresponding original schedules for all 4 approaches are depicted.

As expected, the highest energy improvement with 48.95% can be reached by
using the combined optimal approach. The separated optimal approach leads to
45.92% energy improvement. Strategy S3 with an optimal classical scheduling is
only slightly lower (42.61%) than the separated optimal solution. The improvement
drops down to 30.10% for strategy S3 with a non-optimal classical scheduling. In this
approach, the higher base frequency leads to a significant higher energy consumption
and thus to a significant lower energy improvement. For the 200 tested task graphs
and schedules, one schedule was infeasible in this approach and therefore not used.

As in this experiment the quality of strategy S3 with all its components is rated, the

114

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

Energy Improvement (%)

30.00%

20.00%

10.00%

0.00%

Strategy S3 (SLS) Strategy S3 (Optimal) Separated Optimal Combined Optimal

Figure 6.8: Energy Improvement in a Fault-free Case (Optimal vs. Non-optimal).

overall result is good. Compared to the optimal approaches, strategy S3 leads with
a performance-optimal scheduling to a small improvement decrease of less than 7%.

When only focusing on the BER-heuristic part in S3 that leads only to a very small
improvement of up to additional 6% compared to the improvement of a low idle fre-
quency (see Fig. 6.7), the quality of the BER-heuristic itself is worse. We assume
that 6% from the total improvement of 42.61% in S3 result from the BER-heuristic,
i.e. from scaling down the frequencies for tasks, the improvement from using a low
idle frequency results in 36.61%. When we consider this 36.61% improvement from
a low idle frequency also for the optimal approaches as a rough estimation?®, the
separated optimal variant leads to an improvement of 45.92% — 36.61% = 9.31%
by scaling the frequencies for tasks. The combined approach, in contrast, results
in 48.95% — 36.61% = 12.34% energy improvement for the task frequency scal-
ing. Therefore, the improvement in the combined approach is twice as good as in
the BER-heuristic and also the separated optimal approach leads to 55.16% better

results when only considering the frequency scaling for tasks.

3The higher the total energy improvement is, the lower are the frequencies for the tasks and thus
the less idle times exist. Therefore, the improvement of using a low idle frequency is getting
smaller.

115

6.2.3 Strategy S5

In strategy S5, the focus is put on the fault tolerance. In Fig. 6.9 the overhead

results for the TB-Optimal test set are shown.

25.00%
20.00%
15.00%
Energ;
'g 10.00% & .
Energy fault case
=
o . Performance
S 5.00%
Fault-tolerance
0.00%
S5
-5.00%
-10.00%

Figure 6.9: Overheads of Strategy S5.

The energy in the fault-free case is increased by 13.14%, because in this strategy
all original tasks are scheduled to half of the available PUs. Then, the whole schedule
is copied to the other half, i.e. all tasks are executed twice. Therefore, the additional
energy invest for the duplicates cannot be compensated by using the BER-heuristic
or a low idle frequency. In case of a failure, the improvements of using the BER-
heuristic are visible, because then all unnecessary duplicates are deleted and only
the original number of tasks is executed. As the duplicates are placed onto unused
PUs, gaps between original tasks are not interrupted by duplicates so that the
tasks (originals and duplicates) can be slowed down more. Therefore, the energy
improvement results in 7.29%. The performance overhead of 20.50% results from
using the simple list scheduler to map the tasks onto the PUs, i.e. from a non-
optimal mapping of the tasks and from using fewer PUs for the original tasks where
necessary. Thus, the performance is expected to get better, the higher the number
of PUs is.

To see the influence of a different number of available PUs, the results in Fig. 6.10
are separated by the number of PUs. For two PUs, the energy overhead in the
fault-free case is significantly increased by 61.91% because all original tasks are
executed in sequence on one PU and all duplicates on the other PU. This leads also
to an energy overhead in case of a failure of 17.80%. The execution of the schedule

cannot be speeded up by using two PUs and running original tasks in parallel. Thus,

116

70.00%
60.00%
50.00%
40.00%
30.00% Energy

20.00% Energy fault case

Overhead

Performance
10.00% Fault-tolerance

0.00% . . : .
2 PUs 4PUs 8PUs 16PUs 32PUs

-10.00%

-20.00%

-30.00%

Figure 6.10: Overheads of Strategy S5 for a Different Number of PUs.

the makespan of the schedule, i.e. the performance of the schedule is significantly
increased by 58.12% in both the fault-free and fault case.

When more than two PUs are available, the energy consumption for both the
fault-free and fault case is getting smaller. Finally, for a high number of PUs an
energy improvement of 4.73% (fault-free case) and 17.47% (fault case) is achieved
compared to the original schedules. Especially for 16 and 32 PUs the results differ
only slightly. This indicates that already for 16 PUs most of the PUs are not needed
for the execution of the original schedules. Then, the performance overhead is only

7.08%.

6.2.4 Strategy S6

In strategy S6, the base frequency for the whole schedule is changed to improve
the energy consumption. With the generalized power model P(f) = f3 the lowest
frequency leads to the lowest energy consumption. Therefore, as base frequency
fiowest 18 used. In this case, no additional improvements can be achieved by using
the BER-heuristic. Thus, no differentiation for the insert order SED or SDE exists,
as no further slowdown of tasks is possible. In Fig. 6.11, the overhead results for
the TB-Optimal test set are depicted.

The energy is improved by 98.50% in the fault-free case and by 98.62% in case
of a failure. In contrast, the performance overhead in both cases is significantly
increased (853.46% in the fault-free case and 1,035.80% in the fault case) and there-
fore disproportional high in comparison to the energy improvements. This strategy

represents a corner case for the energy improvement.

117

1200.00%

1000.00%

800.00%

600.00%

Energy

Overhead

400.00%

Energy fault case

Performance

200.00%

Fault-tolerance

0.00%

-200.00%

S6

Figure 6.11: Overheads of Strategy S6.

6.2.5 Comparison of Strategies for the Fault-free Case

In Fig 6.12, the results for all strategies for the fault-free case (S1 to S6) are shown.

80.00%

1035.76%

853.46%

60.00%

40.00% +—

20.00% +—

e
1=
S
S

Overhead

-20.00%

S1

S2

S3 S4 S5 S6

-40.00%

-60.00%

-98.50% -98.62%
Strategies

Energy

Energy fault case
Performance
Fault tolerance

Figure 6.12:

Overheads of Different Strategies.

In all strategies, where frequency scaling is used (S3 to S6), the energy con-

sumption can be improved. As expected, strategy S6 leads to the highest energy

improvements but also to the highest performance overheads in both the fault-free

and fault case. Note that the performance trends in this strategy can be totally dif-

ferent for another power model as discussed in the next section with a power model

of a real system. Strategy S3 represents a good solution to improve the energy with-

out decreasing the performance in a fault-free case, as the energy improvements are

high, no performance loss in the fault-free case exists and the performance overhead

118

in case of a failure is only slightly higher compared to the other strategies S1 to S5.
The best performance in case of a failure (fault-tolerance) is achieved in strategy
S5 where the duplicates are executed completely in the fault-free case. In contrast,
the duplicates in all other strategies are executed only partly. But in this strategy,
a performance loss already exists in the fault-free case, as all tasks are scheduled
with the simple list scheduler and also only half of the PUs are used for originals.
Strategy S4 can be used as an alternative for S5 as well as for S3, because the energy
and performance results are between the results of S3 and S5. Thus, in strategy S4
a moderate energy improvement exists but also a low performance overhead in case

of a failure.

6.2.6 Strategy S7

In strategy S7, the focus is put on the performance in the fault case. The strategy is
evaluated with the test sets TB-Optimal, TB-ACO and TB-SLS. As in this strategy
only DDs are used, the performance overhead in case of a failure is compared to
strategy S3. Therefore, the focus changes form the energy in the fault-free case to

the performance in case of a failure. In Fig. 6.13 the averaged results are depicted.

30.00%

))
o o
o =)
S S
X =X

Performance Overhead in fault case
=

.00% TB-Optimal
TB-ACO
10.00% TB-SLS
5.00%
0.00%
S3 S7
Strategies

Figure 6.13: Performance Overheads in the Fault Case.

The performance overhead in case of a failure for strategy S3 is in a range of
22.38% (for TB-SLS) to 28.16% (for TB-Optimal). When using the EP-heuristic in
the fault case, i.e. strategy S7, the performance overhead is decreased to 12.88% (for
TB-SLS) and 16.24% (for TB-Optimal). This is an improvement of around 42%.

Thus, with strategy S7 the performance is significantly increased in the fault case.

119

6.2.7 Strategies S8 & S9

The results for strategies S8 and S9 are discussed together, as both focus on im-
proving the energy in the fault case. We assume to have a fixed deadline DI until
the schedule execution must finish. When DI is set to the makespan of the schedule
in a fault-free case, a solution for the fault case is often infeasible. For example, if a
failure occurs at the latest task in the schedule, the corresponding duplicate cannot
be started before the end of this task, i.e. the duplicate starts at DI and can thus
only be finished after DI. For other cases, a feasible solution is impossible, where
the frequency for a task must be set higher than the highest supported frequency
to meet the deadline. To analyze the quality of strategies S8 and S9, i.e. the energy
investment spent for a specific deadline, 187 random task graphs (and schedules)
with 7 to 12 tasks for 2, 4, 8, and 16 PUs from the TB-Optimal test set are used.
The relative energy increase, i.e. relative to the fault-free case for different deadline
increases (5%, 10%, 15%, 20% and 25%) is calculated. In a first step, an energy
optimal schedule is calculated with the ILP described in Sect. 4.5 for the fault-free
case, where the makespan of a performance optimal schedule is used as deadline.
In this way, the initial assumptions for both strategies are identical and the energy
overhead in case of a failure is separated from effects due to scheduling and frequency
scaling heuristics [56]. In a second step, an energy optimal schedule for each failure
point is calculated with the help of the ILP for the re-scheduling variant presented
in Sect. 4.5. Finally, strategies S8 and S9 are used and compared to the results of
the optimal solution.

In Fig. 6.14 the results for the optimal variant and both strategies are depicted,
where for each deadline increase the number of cases are shown that lead to different
energy increases. We start with a low value of deadline increase (5%). The energy
increase of the optimal variant (upper case) is mostly between 0% and 110%. Some
cases result in a 10% lower energy consumption compared to the corresponding
original schedule, as in these cases the frequencies for more tasks can be scaled
down in the fault case, because of the additional time of 5%. When increasing the
deadline further by 10% up to 25% the energy increase becomes lower and for more
schedules the energy can be improved compared to the fault-free case (up to 40%).
In strategy S8 (middle case), where the LER-heuristic is used, the number of cases
is significantly decreased and the distribution is shifted slightly to the right of the
figure. As already described in Sect. 4.3, the LFR-heuristic starts with very low

frequencies for tasks that result in high frequencies in the end (often higher than the

120

Optimal

Number of Cases

Strategy 8

Energy Increase in Fault Case (%)

Strategy 9

Energy Increase in Fault Case (%)

25
350 5 15 Deadline Increase (%)

Figure 6.14: Distribution of Relative Energy Increase for Different Values of Dead-
line Increase.

121

highest supported frequency), so that in many cases the deadline cannot be met.
Additionally, the time for the communication between dependent tasks is ignored
when calculating a new frequency. Therefore, the remaining time to execute all
tasks is much shorter than the time interval used by the LFR-heuristic. In strategy
S9 (bottom case) that consists of the CP-heuristic, the distribution of the solutions
is concentrated at 10% energy increase in all cases of deadline increase. Only a
smaller number of cases leads to a higher or lower energy increase. In total the cases
are more spread than in the optimal variant, mainly between 0% and 200% for the
lowest deadline increase. Also for the other values of deadline increase strategy S9
leads to a higher energy increase than the optimal variant or strategy S8.

The distribution of the relative energy increase for the different values of deadline
increase for all strategies and the optimal variant is a GEV (Generalized Extreme
Value) distribution. The GEV distribution is a composition of three sub families,
the Gumbel, Fréchet and Weibull distribution. Each GEV distribution is associated
with one of these sub families depending on the shape parameter £ [152].

In Figs. 6.15, 6.16 and 6.17 the density and probability of the data for the opti-
mal variant and for strategies S8 and S9 are shown for different values of deadline
increase, i.e. 5%, 10%, 15%, 20% and 25% from top to bottom. Also the fitted GEV
curves are depicted, where the used parameters GEV (&, o, u) for shape &, scale o
and location p are shown within the figures. As in all figures the shape £ > 0, the
GEV distributions for these experiments correspond to Fréchet distributions.

For all values of deadline increase, the fitted GEV distribution curve differs only
slightly from the results in both the density and probability of the data. Only for a
high energy increase the probability results are higher than expected.

Another important property to rate the quality of the strategies is the number
of feasible solutions that are found by the strategies. As already seen, strategy S8
(LFR) leads to a significantly lower number of feasible solutions compared to S9 and
the optimal variant.

In Fig. 6.18, the number of feasible solutions is shown for the energy optimal
schedules and for the schedules that are generated by strategies S8 and S9. In total
26,295 schedules were calculated, i.e. 8,765 for each strategy and for the optimal
variant. For every value of deadline increase 1,753 schedules are possible when
all solutions are feasible. As expected, the optimal variant (yellow bars) finds the
highest number of feasible solutions. Starting from a low value of deadline increase
(5%), 1,259 schedules were found, i.e. 494 infeasible solutions. For a higher value of

deadline increase, the number of feasible schedules is increased up to 1,741 schedules

122

5% Deadline Increase
0.012
0.01
£0.008
g 0.006
0.004
0.002 5
. = 5% Deadline Increase
0 .
0.015
0.01
2
E
=
j)
A
0.005
= 10% Deadline Increase
0 — GEV(0.38,25.69,8.61
0 50 100 150 200 250 0 50 100 150 200 250
Data Data
0.015 M 15% Deadline Increase %9999 o
_ : § 4
N 039
00995
0.01 b 05
2 = 05
g E 0.25
_ 2 o ob
0.005 A ﬁ G;
0:0001 . .
15% Deadline Incre
0 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Data Data
—— 20% Deadline Increase
0.025 — GEV(0.33,20.47.-10.15
0.02
£0.015
Z
a
0.01
0.005
0
0 50 100 150 200 0 50 100 150 200
Data Data
0.9999
0.025 ’ o
I 00’98
0.02 A 098
0.75
£0.015 . £05
z 50625
~ 0,01 &90'0]5
0-005 0.0001 [f
0 o0 — GEV(0.29,19.37,-16.82
~50 0 50 100 150 -50 0 50 100 150

Data Data
Figure 6.15: Density and Probability of GEV Distribution for Optimal Solutions.
123

0.016 5
5% Deadline Increase %%%/
—GEV(0.36,25.42,26.35) 4
0.014 O
0%
0.012 00755
-
0.01 2025
= Z o
w
go.oos 2 ook
0.006 £ §9085
0.004
0.002 < 5% Deadline Increase
070 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Data Data
0.016
——10% Deadline Inc
0.014
0.012 i
0.01
g
Z0.008
j5)
g _
0.006 1
0.004 r.
0.002 & 10% Deadline Increase
——GEV/(0.28,24.54,21.52
070 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Data Data
008 ¥
= GEV(0.34,23.85,15.43
0.016 {\ :
0.014
>
3}0.012 =
E 0.01 2
g 20
20.008 E@?&%
0.006
0.004
0.002
0770 50 100 150 200 250 300
Data
] i
= GEV(0.41,22.78,8.78 i
0.02} | ?
0.015 \ 0,]
71 7 0
=] < 3
A 0.01 @éﬁﬁf
A0,
0.005
0 = GEV(0.41.,22.78.8.78
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Data Data
A o 0.999
0.025 — GEV(0.42.22.70,3. 0.99
. n £05
70.015 2025
z < 0.1
A 20.05
0.01 A
0.005 0.0001
’
— GEV(0.42,22.70,3.96
SR
0770 50 100 150 200 250 300 0 50 100 150 200 250 300
Data Data,

Figure 6.16: Density and Probability of GEV Distribution for Strategy S8.

124

%103

M —— 5% Deadline Increase 0, Q
8 —— GEV(0.26,49.28,47.74) Oqg Qé o
: il
- 0.95
[§ — & 0.9
s Z 075
= 3
z Z 05
D4 o
A £025
3 00.1
9 .05
1 6)685 © 5% Deadline Increase
. P
0 50 100 150 200 250 300 350
Data Data
M 10% Deadline Increase
0.012 ——GEV(0.36.36.63.28.75
0.01 1
20.008F [T
g
A 0.006
0.004
0.002 i
o 10% Deadline Increase
0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Data Data
0.016 N 15% Deadline Increase . o
34,31, . o & ©
0.014 o
0.012 \ V;
2 05
» 0.01 = 0.25
= 3
£0.008 2 800%’
A g Q.
0.006 “@ggg%
0.004
0.002 @& 15% Deadline Increase

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Data Data

——20% Deadline Inc

ao®
0.02

0.015

O 20% Deadline Increase
—— GEV(0.32,28.63.11.18

Density
e
=) o
S 1=
=) & =
»3

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Data Data
]
— GEV/(0.28,27.20,4.89
0.02
>
£0.015 \ =
z 8
] -
g £
0.01 £
0.005
& 25% Deadline Increase
0—50 0 50 100 150 200 250 300 350 400 S50 0 50 100 150 200 250 300 350 400
Data Data

Figure 6.17: Density and Probability of GEV Distribution for Strategy S9.
125

2000

1800

1600

= =
[=
=3 (=3
o (=}

1000 Optimal
S8 (LFR)
S9 (CP)

o
(=3
(=}

Number of feasible Solutions
D
[=]
o

400

200

5% Deadline 10% Deadline 15% Deadline 20% Deadline 25% Deadline
Increase Increase Increase Increase Increase

Figure 6.18: Number of Feasible Solutions for Different Values of Deadline Increase.

for a deadline increase of 25%, i.e. only 12 solutions were infeasible. In total 7,828
out of 8,765 schedules were found. In contrast, the LER-heuristic used in strategy S8
(orange bars) leads to 2,935 out of 8,765 schedules in total. Thus, only for 33,49% of
all cases a feasible solution was found. The CP-heuristic used in strategy S9 results
in 6,857 feasible schedules. For a low value of deadline increase (5%), 943 schedules
were found, i.e. 316 less than in the optimal vairant. For a higher value of deadline
increase the number of feasible solutions is increased up to 1,683 schedules at 25%
deadline increase. The CP-heuristic then finds only 58 less schedules than in the
optimal variant.

In summary, the energy increase in both strategies is only moderately higher com-
pared to the optimal solutions. Additionally, strategy S9 results in a high number
of feasible solutions, but strategy S8 finds no suitable solution for most of the cases.
Therefore, strategy S9 is a good alternative to the optimal variant, that can be
further improved by using a more complex distribution of the power budget than a

simple uniform distribution (see Sect. 4.3).

6.3 Experiments on Real World Platforms

6.3.1 Intel i7 3630gm, Intel i5 4570 and Intel i5 E1620

Model Validation To prove the accuracy of the power model explained in Sect. 5.3,

three different computer systems with Intel processors are used as test platforms:

126

1. Intel i7 3630gm Ivy-Bridge based laptop
2. Intel i5 4570 Haswell-Bridge based desktop machine
3. Intel i5 E1620 Haswell-Bridge based server machine

To construct the power model, the power values are extracted by physical exper-
iments using the Intel RAPL tool (see Sect. 2.5.5). As described in Sect. 5.1 the
power consumption is measured for each frequency combination for 10 seconds with
a sampling rate of 10 ms and all measurements are repeated five times. The power
model is tested on all platforms for a mixed workload (micro benchmark 6) and on
the server system also for the other benchmarks (1 to 5) described in Sect. 5.1.

The measured power values were used to construct the power model for the plat-
forms and scenarios. The architecture specific tuning parameters (s, 3, a and b) in
Eq. 5.2 and 5.3 were then determined by using a least squares analysis.

Tab. 6.2 shows the individual parameters for the server platform for the ALU-,
FPU-, SSE-, BP- and RAM-intensive workloads after fitting the physical measure-

ments to Eq. 5.2 and 5.3 and optimizing the tuning parameters.

Table 6.2: Values of the Architecture Specific Tuning Parameters for the Bench-
marks (i5 E1620).

1. ALU 2. FPU 3. SSE 4. BP 5. RAM
Pige | 8.895 W 9.184 W 8.793 W 9.374 W 8.752 W
s 3.83 W 3.83 W 3.83 W 3.83 W 3.83 W
B 0.344 W/Hz3 | 0.344 W/H 23 | 0.344 W/Hz3 | 0.344 W/Hz3 | 0.344 W/H 23
a -3.01 Hz -2.87 Hz -2.82 Hz -2.88 Hz -2.92 Hz
b 5.61 Hz> 5.14 Hz? 5.62 Hz> 5.14 Hz> 5.61 Hz>

The results of the least squares analysis for a mixed workload scenario on each

platform is shown in Tab. 6.3.

Table 6.3: Values of the Architecture Specific Tuning Parameters for a Mixed Work-

load.
i7 3630 i5 4570 i5 £E1620
Pae | 3.781 W 5.976 W 8.728 W
s 1.29 W 0.42 W 3.83 W
B 0.340 W/Hz3 | 0.091 W/Hz® | 0.344 W/H 23
a -3.42 Hz 1.02 Hz -2.87 Hz
b 5.88 Hz? 12.08 Hz? 6.13 Hz?

Tab. 6.4 shows exemplary the difference between the data values and the model as

the maximum and average deviation for the mixed workload. As seen in the table,

127

the maximum deviation was lowest using the desktop CPU (i5 4570) and higher using
the laptop CPU (i7 3630) and the server CPU (i5 E1620). The reason for having a
less exact fit using the server and laptop CPU is because of the significantly higher
power output using the turbo boost on the i7 3630qm and on the i5 E1620 CPU,
which is more difficult to fit to the curve than the more smooth power curve of the i5

4570 CPU. However, with a low average error value this model is considered feasible

for the experiments.

Table 6.4: Difference Between the Data and the Model as Error Values Squared from
Figure 6.19.

17 3630 | i5 4570 | i5 E1620
Avg. deviation | 1.09% 0.84% 1.13%
Max. deviation | 15.56% | 7.28% 17.07%

In Fig. 6.19 the resulting power curves for the three test platforms are presented
for the real data and for the model.

Intel i7 3630
25 FModel /

oA NN

0 .)
Performance level

Power [W]

WO vf’Y\ 10\” &, o\”’%oY\ & o, & o‘&%o” & & 0*110\"4“ & & e\” e
N e" D L P P P AP P A P SN PN L
o o‘ 2 @ 0\0 0@ 0@ % @ 0@ o@ o@' 0@ 0@' 0\0 &7 @ o\e o@ 0@ & @ 0@ 0@' 0\0 0@ 0@
,\Cv KO R\O7 \O7 O \C7 \C 'LO 'LO ,LC: ’LG 'LO "LG ’LG ,50 ,bC; '50 ,50 ,bC; ,50 ,50 NN NN OIS,

Do Intel i5 4570
“

Power [W]
\
\

Performance level
&% % o o o o o % B B, 8, X, 7 %, o, X 0, 6% o X o 07, 6 X X, o o ot
s02%a % Rt 10490000001 10596000001 1

2 @ (@ (@ (@7 @® @® @® @® @® @° @° ® ° @ @ (@ (@ @ (@ @° @® @° @° °
536 5% %, o°‘ 0°‘ o°‘,Lo°‘(Lo°‘100‘100‘100‘100‘100‘100‘ SO 00‘ o 0¥ o o o o o°‘ Keaeaten

. Intel i5 E1620 /« | /
" B ,_,/—/_, / //\, - - __—

50

40

Power [W]

Performance level
RO 0‘& oY“' 0\"4“ <, 0\"4“ OY“' 0\"4“ & 0\"4“ <, 0\"4“ o 0\"4“ & 0\"4“ * 0\"4“ & e\” 0\’\1' &
N ARAY R\

L P P P L P S ST PN PN S P QTIPSR SN SN IO Ly
Qoe' oo“a Oo‘ Oo‘e Oo‘e' Ooe Oo‘e' Ooe Oo‘e' Oo‘e Oo‘e' Ooe o‘e’ o"a o‘e’ oe Oo‘e’ 00@ Oo‘e’ 006 o‘e’ Oo‘e Qo‘e’ oe Qo‘e’ Go‘e Oo‘e’ Goe Oo‘e’ o‘e Oo‘e’ Oo‘z
ATON S N N e A A A A A - - - D R D - - D - D " "

Figure 6.19: Power Consumption and Power Model for Different Platforms.

128

Real-world Evaluation First tests on the i5 4570 desktop machine and on the
i7 3630qm laptop machine indicate that the power model from Sect. 5.3 cannot be
used for these systems, although the model seems to fit the real data well as shown
above. In Fig. 6.20, exemplary the power consumption of the desktop machine and
the modeled power consumption for an example schedule with three tasks mapped

onto two cores with different frequencies is shown.

power (watt)

— PKG
— model

50
40
30
20
10+

O |
0 10 20
PUs
A

PU 37

time (sec)

PU 2
PU 1+

PU 0-{ 0

.
0 10 20 time (sec)

Figure 6.20: Power Consumption for an Example Schedule Using Different Frequen-
cies (Desktop Machine).

The schedule is depicted in the bottom part of the figure, where task 0 and 1 are
running with frequency 3.2 GHz (dark orange) and task 2 with frequency 2.5 GHz
(light orange). In the top part, corresponding power curves are shown. We consider
first the modeled power consumption (red line): As expected, the power is decreased
after the frequency on PU 1 is scaled down from 3.2 GHz to 2.5 GHz (task 2). If we
now consider the real power curve (blue line), this decrease of power is not seen. The
reason for the unchanged power consumption, when scaling the frequency of a core
is caused by the processor type and the ACPI standard (see Sect. 2.5.4). For both

systems, voltage is scaled for all cores together and not separately. Although the

129

total voltage might be decreased depending on the frequencies, the ACPI standard
forces the system to use a voltage level high enough to let all active cores running
on the highest frequency in use. Hence, as long as not all cores are scaled down,
the voltage level is kept high. After task 0 and task 2 have finished, the power
consumption is, as expected, decreased to the idle power of around 6 W. As the
system check tool (see Sect. 5.1) does not measure power consumption for different
frequencies at the same time, i.e. only one frequency for a different number of active
cores, the above explained behavior was not identified by this tool.

The behavior of the power consumption on the server system differs from the other
systems, as now for each core a separate voltage regulator is used independently.
Fig. 6.21 shows an example test case, where the expected behavior, i.e. the modeled

power consumption fits the real power consumption well*.

power (watt)

40
30 — — PKG
— model
20 —
10 —
0 rFtr 1 °r1 11 1T T 1T T T T T T"] >
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 time (sec)
PUs
‘\ 75 6 3 17 18
PU 3 R | |
1 04 10 9 13
eoe— | | (M [| [16 __
2 8 11 12 — (();Lg;?xﬁyt)azlaplicate
PU 1 DS (o] [s]| [
2 14 15 19 16 20
PU 0 | I
[| I [[[I I [I [I | [I [I >
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 time (sec)

Figure 6.21: Power Consumption for an Example Schedule Using Different Frequen-
cies (Server Machine).

4This figure was generated automatically by a developed figure generator that is included into
the runtime system RUPS, to check (in an easy way) the correct behavior of the real system in
use.

130

In this example, a fault-tolerant schedule is depicted that was executed in a fault-
free case. The red tasks represent the duplicates (in this case only DDs are used) and
different frequencies are indicated by different shades of orange. A darker orange
represents a higher frequency, a lighter orange a lower frequency.

The server system as a common platform for clusters and grids is therefore used for
the real-world evaluation. For each workload scenario, 922 schedules were tested that
are related to 40 task graphs from the TB-Optimal test set with random properties
and between 19 and 24 tasks. For each task graph the already existing schedule runs
firstly without any changes and thus without any failures. Then, the fault-tolerant
schedules that result from strategy S3, where only DDs and the BER-heuristic are
used (see Sect. 4.4.2) were calculated and executed by the runtime system. Then,
all fault-tolerant schedules run with a simulated failure at each task by exiting the
corresponding MPI-Process directly before the task execution started.

The accuracy of the prediction is validated by comparing the predicted energy
values that result from the scheduler with the real measurements of the runtime
system.

In Fig. 6.22, exemplary the predicted and real energy consumption for a mixed

workload for all schedules is presented.

6500 T T T T T T T

Predicted Energy =
Measured Energy s |

6000 [

5500

5000

Energy (J)
5
S

4000

3500

3000

2500 1 1 1 1 1 Il 1 1 Il
0 100 200 300 400 500 600 700 800 900 1000

Schedule Nr.

Figure 6.22: Comparison Between Predicted and Measured Energy Consumption
(for Mixed Workloads).

131

Tab. 6.5 presents the averaged and maximum deviation for the prediction for all
benchmarks. With a maximum deviation of around 7.73% and nearly 2.24% on

average, the prediction fits the reality quite well.

Table 6.5: Differences Between Measured Data and Predictions for all Schedules.
Deviation Prediction
Average | Maximum

1. ALU 2.42% 7.63%
2. FPU 2.00% 7.33%
3. SSE 1.81% 7.75%
4. BP 3.45 8.61%
5. RAM 2.09% 7.90%
6. Mixed (all tests) | 1.64% 7.14%

In total (averaged) | 2.24% 7.73%

Upper/Lower Bounds for the Energy Consumption The estimation of upper
and lower bounds for PE and F'T' in Sect. 3.4 are independent of a certain system.
They are correct in general for every system. But the estimation of the upper and
lower bounds for £ depends highly on the system in use. In Sect. 3.4, these bounds
are estimated for a generalized power model. Therefore, the bounds have to be
adapted to the server system by considering the measured values resulting from the
system check tool for the estimation. Based on these values, the energy consumption
of the i5 E1620 processor is calculated for a workload at different frequencies and
number of cores. We assume a perfectly divisible workload can be executed in one
second when using 4 cores and the highest supported frequency (3.6 GHz). Based
on this assumption, the runtime of the workload for all other frequency/core com-
binations can be calculated. Then, the energy consumption for the workload can be
achieved by multiplying the calculated runtime with the measured power consump-
tion for the corresponding frequency and number of active cores. In Fig. 6.23, the
energy behavior for the server system is presented.

The lowest energy consumption is at 2.3 GHz using four cores, the highest energy
consumption is at the lowest frequency (1.2 GHz) using one core. Thus, a lower

bound for E can be given by:

Mseq
DPrmaz - 2.3 GHz'

Ebest = (6]-)

132

180

1 Core mm—

Intel i5 E 1620 2 Cores
160 |
3 Cores
o b 4 Cores |
120 |

100

Energy (J)
| .

(=]
(=]
I

S
o
T
1

DN
=
T
1

0 | | | | | | | | | | | | | |
1.2 1415 1.7 19 2 2223 25 2728 3 3.233 3536
Frequency (GHz)

Figure 6.23: Energy Behavior for a Workload at Different Frequencies and Number
of Cores.

An upper bound for E can be achieved by running all tasks in sequence on one

PU with the lowest possible frequency fiowest:

Meseq

e 6.2
1- flowest ()

Eyorst =
Results The experiments are done with the TB-Optimal test set. As seen above,
the system model closely reflects the real system in terms of energy consumption.
This fact is used to simulate nearly 34,500 of the given schedules using the RUPS
system. The trade-off between PE, F'T, and E is evaluated with the four strategies
S3 to S6 from Sect. 4.4.2. These strategies reflect system setups with one of the
three parameters as inherently dominating. This choice will give a wide range of ex-
periments with the extreme corner cases covered and everything between the corner
cases. In all strategies, the BER-heuristic is used to reduce the energy consumption.
The following strategies were used for the simulation, where the turbo frequency is

not considered to avoid throttling effects:

S3: Use only DDs and start with the second highest supported frequency (3.5
GHz). In this scenario, the focus is firstly put on PE and secondly on F.

S4: Use Ds and DDs and start with the second highest supported frequency (3.5
GHz). This scenario mainly targets on PFE, but also on FT.

133

S5: Create the schedules with a simple list scheduler that uses half of the PUs for
original tasks, the other for Ds and start with the second highest supported
frequency (3.5 GHz). Here the focus is mainly on F'T'.

S6: Select a lower frequency for original tasks and start with frequency level 7 (2.3

GHz). With this scenario we try to focus on FE.

In Fig. 6.24 the results for all strategies are presented. The equations from Sect.
5.3 are used to find good upper and lower bounds for PE, E, and F'T. For a better
illustration only the results for systems with 4 PUs (in total 6500 schedules) are
shown. But the results for the other number of PUs are similar with respect to the
overall trends. They differ only slightly by small shifts.

The left column of the figure presents the trade-off between E and PFE for all
strategies (S3, S4, S5 and S6), the middle column presents the trade-off between E
and F'T and the right column presents the trade-off between PE and F'T.

We start with strategy S3. In this strategy, a better performance also leads
to a better energy consumption. With a performance of nearly 100% the energy
consumption goes down to around 5% (related to the best and worst cases from the
boundaries). This behavior seems to be related to the high idle power of the system
compared to the dynamic power. The higher the idle power is, the better it is to
run on a high frequency, e.g. at the second highest like here. When we consider the
trade-off between E and F'T', a lower energy consumption in the fault-free case, and
thus a higher performance of the schedule, leads to a higher performance overhead
in case of a failure. This behavior results from the decreasing number and size of
gaps within a schedule, when improving the performance. Because then each DD
leads directly to a shift of its successor and succeeding tasks. The trade-off between
PE and FT shows directly the same behavior. The higher the performance the
higher is also the performance overhead.

In strategy S4, Ds and DDs were used for the fault tolerance. Here the left
part (E <> PE) of the figure is more spread compared to S3. This indicates that
especially for a lower performance more gaps can be filled with Ds. This leads to
an increased energy. The middle part of the figure (E <» F'T) shows the resulting
improvement of the performance overhead in case of a failure. And also on the right
part (PE <> FT) a slightly shift of all results to the left can be seen.

In strategy S5, the focus is put on a good FT result. On the left side, the
performance is much lower and the energy consumption is much higher than for

strategies S3 and S4. But in this strategy no performance overhead in case of a

134

failure exists. Therefore, the middle and right boxes of the figure are empty and the
performance in the fault case is equal to the performance in the fault-free case.
Strategy S6 is used to generate schedules that run with a lower frequency (fre-
quency level 7, 2.3 GHz). The energy consumption can be improved by running on
a lower frequency, bot only if the performance is increased. Then, nearly the best
energy consumption of 0%, i.e. the lower bound of E can be reached. The other

both trade-offs are the same like for strategy S3. They are just a little bit stretched.

60 T T T T 60 T T T T — 100
> > S
a0 o 501 — 80 o < i
g .2 g .2 o 90
= £ 40 == S
A& S g 80]
o g 301 o 5 g
8 R =
Q) <] - -
o] 101 ~ ! 60
O 1 1 1 1 1 1 | - 1 50 1 1 1 1
50 60 70 80 90 100 020 40 60 80 100 0 20 40 60 80 100
Performance (%) Performance Overhead Performance Overhead
S4 when Fault (%) when Fault (%)
60 — 60 — 100
> > X
5500 227 1 o 1
S 2 401 = i g
a% 0 2% 40 2 o |
o 5 30f o 5 30 § g
2 3 2 2 570 4
E} = 201 E} = 20 - 2
é O 101 ‘:qé O 10 _ d‘j 60 T
0 I I I I 0 50 I I I I
50 60 70 80 90 100 020 40 60 80 100 0 20 40 60 80 100
Performance (%) Performance Overhead Performance Overhead
S5 when Fault (%) when Fault (%)
60 60 T T T T § 100 T T T T
> 50| 1 & 50 12 0 |
28 2 g g 0
3.8 40 g .2 40} E =
a8 g = 80F T
A £ 3L 4 B & 30l : g
) 5 : [5 2 70 4
£ 3 201 41 23 2] . RS
= 3 e 5
Gl O 10+ — o) O 10+ i [60 - i
= 0 1 1 1 1 = 0 1 1 1 1 50 1 1 1 1
50 60 70 80 90 100 0 20 40 60 80 100 020 40 60 80 100
Performance (%) Performance Overhead Performance Overhead
S6 when Fault (%) when Fault (%)
60
b>6 - 60 T T T T % - 50 T T T T /g 100 T T T -I
g 8 501 1 58 F 1 £ oor -
S = _ = = y 4
€3] E* 40 €3] é* 10 § 80 4
£ =230 1 £330 . 2
ZZ ZZ g 70 4
=32 { £§ 2 T
&% 1 1 &9 1} i zié 60 _
0 ol . 50
50 60 70 80 90 100 020 40 60 80 100 0 20 40 60 80 100

Performance (%)

Performance Overhead
when Fault (%)

Performance Overhead
when Fault (%)

Figure 6.24: Results when Scheduling According to Scenarios A,B,C,D Showing:
Relative Energy Consumption (Lower is Better), Performance (Higher
is Better), Performance Overhead when Fault (Lower is Better).

135

With these experiments we could show that there does not exist any overall so-
lution for that three-variable problem without giving up at least one of the three
parameters. Thus, the decision on which parameter the main focus lies must be

made by the user.

6.3.2 Intel SCC

The experiments for the Intel SCC are done based on the power model presented by
Eitschberger and Keller [45]. They use a cubic power function for the whole proces-
sor and separate the power consumption of components like the cores, network or

memory controller. The power function can be described by the following equation:

Psco(fr, -5 f6)

6
83 (b i+ 50 fi) + 5, (6.3)
i=1

where S represents a static value for the power consumption of the network and
memory controller. The power consumption of a core is given by a dynamic part
be - f2 and a static part s.- f;, where b, and s, are device specific constants and f; is
the frequency for island i. As 6 voltage islands exists with 8 cores each, the sum of
all voltage islands must be multiplied by the number of cores in every island. They
obtain the values b, ~ 2.015 - 1072 Watt/MHz* (MegaHertz), s, ~ 10~¢ Watt/MHz
and § ~ 23 Watt and an averaged error value of 5.58%. In their power model, they
consider voltage islands with fully loaded cores at a given frequency and do not
consider idle power.

To use the power model for the experiments in this thesis, we assume that each
schedule is executed 8 times in parallel, e.g. with different input values, so that all
cores of a voltage island are either fully loaded at the same frequency or in idle
mode. The idle power is assumed to be zero for simplicity.

The task graphs of the real applications (robot control and sparse matrix) and
the test set TB-SLS are used with strategy S3 and the power model of the SCC
for the experiments. The results of the test set TB-SLS are then compared to the
results of the real applications, because the schedules for the real applications are
also only generated by the simple list scheduler described in the beginning of this
chapter. Additionally, the communication times in the TB-SLS test set are ignored
as the communication is directly done within the SCC. The task graphs of the real
applications do also not consider any communication times. In Fig. 6.25 the energy

improvements in the fault-free case are depicted.

136

10.00%

9.00%

8.00%

7.00%

6.00%

5.00%

4.00%

Energy Improvement (%)

3.00%
2.00% -
1.00%

0.00% -

TB-SLS

(no communication time)

Robot Sparse Matrix

Figure 6.25: Energy Improvement in a Fault-free Case (Strategy S3).

For the SCC as an example of a manycore system and task graphs without com-
munication costs, the energy can be improved by around 2% for the real applications
and by 3.93% for the TB-SLS test set without communication costs.

6.4 Analysis of the Scheduling Time

The averaged and maximum scheduling time to generate a schedule is shown in
Tab. 6.6.

Table 6.6: Scheduling Time.

Schedules with | Schedules with | Schedules with
7-24 Tasks 25 - 250 Tasks 7 - 12 Tasks
(heuristics) (heuristics) (optimal)
Average 0.038 s 11.27 s 21.63 s
Maximum 8.78 s 194.31 s 1,723.14 s

For the test sets TB-Optimal, TB-ACO and TB-SLS with a small number of
tasks (7 - 24 tasks), the averaged scheduling time is very low (0.038 s). Even the
maximum scheduling time of 8.78 seconds is moderate compared to the runtime of
a schedule (of around 120 s on average). For all strategies the scheduling time for
the small cases varies in a small range of 0.029 s and 0.053 s, where the lower values

were achieved in strategies S1 to S4.

137

The scheduling time for the large cases with up to 250 tasks is on average at 11.27
s. The maximum is at 194.31 s. Also here the scheduling time is small compared to
the runtime of a schedule (of around 1000 s on average).

In contrast, the scheduling time for the optimal solutions for 7 - 12 tasks is very
high with 21.63 s on average and with a maximum of 1,723.14 s. Especially for
schedules with a high number of PUs the solution space is significantly increased.
The time for the generation of optimal solutions is therefore disproportional high

compared to the improvements resulting from the optimization.

6.5 Summary & Discussion

In this chapter, the proposed strategies from Sect. 4.4 were evaluated and analyzed
for various power models and platforms. As a result, the accuracy of the power
model for parallel platforms, presented in Sect. 5.3, is on average quite well with
a standard deviation of around 1% (see Sect. 6.3.1). For processors with separate
voltage regulators for each core like the Intel i5 E1620, the prediction of the scheduler
(and simulator) is close to the real behavior. Only small standard deviations of
2.24% (on average) and 7.73% (on maximum) exist. Different types of workloads
can be considered by using various workload classes, as proposed in Sect. 5.1, and
corresponding parameters for the power model, as presented in Sect. 6.3.1.

If the frequency of PUs is constant over the whole schedule execution, the use of
available and free PUs for the placement of duplicates leads to a better performance
but to a significant higher energy consumption. However, if frequency scaling is
supported by the parallel system, most of the energy improvements result from idle
times where the frequency is scaled down to the lowest possible. In addition, up
to 6% can be saved, when the frequency for tasks is scaled, too (see Sect. 6.2.2).
A combined optimization of performance and energy consumption is slightly better
than a separated optimization. Compared to solutions with an optimal classical
scheduling and strategy S3 for reducing the energy consumption, the difference is
small. Hence, using S3 is a good alternative to the optimal solutions.

If the focus of a user is put on the fault tolerance, strategy S5 is advantageous for
high numbers of PUs. For small numbers of PUs, strategy S4 leads to better results.

Strategy S6 with the highest energy savings is worthwhile for parallel platforms,
where the most energy efficient frequency is in the upper range of the supported
frequencies. Otherwise, the performance decrease is disproportional high so that

then strategy S3 is the better choice.

138

For the fault-case, strategy S7 leads to high performance improvements whereas
strategy S9 is a good solution for improving the energy consumption, as the number
and quality of feasible solutions is close to the optimal. Finally, the scheduling time
for all strategies is small.

Exemplary user preferences and favored strategies are summarized in Tab. 6.7.

Table 6.7: User Preferences and Favored Strategies.

User Preferences Favored
Fault-free Case | Fault Case | Strategies
PE (FT) PE S2 + ST
PE (E) E S3 + 89
PE (FT) (E) E 5S4 + 89
E (PE) PE S3 + ST

E E S6 + S9

FT PE S + ST

FT (PE) PE S4 + ST
FT E S5 + 89

FT (PE) E S4 + 89

As seen in Tab. 6.7, various user preferences are represented by combinations
of the proposed strategies. Next to major objectives, also minor criteria can be
considered, resulting in a variety of possible solutions with reasonable results. The
worsening of criteria that are not focused is moderate. Thus, the investment for
improving favored objectives is low. In addition, the strategies can be hidden from
users that do not have any background knowledge about scheduling, so that they
only have to give their preferences by selecting a combination of objectives. Then,

the corresponding strategies can be chosen automatically by the scheduler.

139

140

7 Conclusions

In this thesis, the interplay between performance, fault tolerance and energy con-
sumption was explored. In general, an overall optimal solution for this three-
dimensional optimization problem does not exist. All two-dimensional combinations
of the above mentioned objectives already result in a trade-off, where the improve-
ment of one criterion leads to a worsening of the other one. In the literature, the
focus is therefore often put on one criterion that is improved, while the other one
is fixed. For example, the energy consumption for a schedule is optimized without
changing the performance. A combination of all three above mentioned objectives
is even more complex, since a change of an objective no longer affects only another
but also can affect both other objectives. In the literature, the three-dimensional
optimization is rarely considered. Often, the focus on the primary and secondary
criterion is already fixed in advance. However, as a result, only a very small part
of the total view of the trade-off is addressed on the one hand, and also no other
orientations are considered on the other hand.

To discuss the trade-off between the three objectives in detail, in this thesis several
fault-tolerant and energy-efficient strategies were presented that focus on different
criteria in the fault-free case and ultimately represent several preferences of a user.
Therefore, the fault-tolerant task duplication-based scheduling approach of Fechner
et al. [59] is used, extended and combined with energy-efficient options and heuris-
tics. Additionally, another trade-off between the fault-free and fault case is not
addressed in previous work. But the preferences of a user can change between both
cases. For example in a fault-free case, the energy consumption is the most impor-
tant criterion, while in the fault case the performance is dominating. Therefore, in
this work also strategies for the fault case were presented that either focus on the
performance or on the energy consumption. In addition, energy-optimal solutions
were presented and used for comparison.

The strategies were evaluated with various test sets from the benchmark suite of
Honig [84]. In a first step, the energy consumption for the resulting schedules was

predicted based on a generalized power model, independently of a certain platform.

141

In a second step, power models for real parallel platforms with an acceptable accu-
racy were constructed, tested and used in the evaluation. Therefore, in this work
a fault-tolerant and energy-efficient prototype runtime system called RUPS (Run-
time system for User Preferences-defined Schedules) was presented, that is realized
with an extended fault-tolerant version of MPI and supports frequency scaling by
integrating DVFS.

To analyze and visualize the trade-off between all objectives, the performance
and energy consumption for all strategies were given for both the fault-free and
fault case. The results show, that various factors have a significant influence on the
trade-off like different energy curves of processors, the number of used PUs for the
placement of duplicates or a tolerable increase of the makespan in case of a failure.
In terms of energy, the most improvements result from idle times, where a lowest
supported frequency can be used and only a smaller part can be achieved by also

scaling frequencies for tasks.

142

8 Outlook

As in this thesis several subjects like performance, fault tolerance, energy efficiency,
heuristics, optimization, power modeling, or runtime system are combined under a
broader topic, a wide spectrum of future research can be done. Therefore, only some

possible directions are described in the following:

Performance In this thesis only homogeneous systems are considered. An exten-
sion to heterogeneous systems can be included to get more possibilities to improve
the performance of a schedule. Until now, the CBF-heuristic is only implemented
for the fault-free case. Therefore, the implementation for the fault case can be done
to also speedup the whole schedule, i.e. the performance of the schedule in case of
a failure. The EP-heuristic can be improved by also allowing tasks to start earlier

than the time given in the static schedule.

Fault tolerance The probability of a fault or failure depending on the runtime
of a task, schedule, or PU is not considered. Tasks for example can be weighted
according to their runtime, so that longer running tasks get a higher probability
to fail. Another aspect focuses on the number of failures, that can be tolerated
by the runtime system. Mainly two possibilities exist: Including more copies of
each original task, i.e. duplicates directly in the fault-free case into the schedule or
delete all unnecessary duplicates in case of a failure and include a new duplicate for
each task. The first approach might lead to a lower performance in case of more
than one failure because of an inefficient placement of the duplicates, the second
approach in contrast is a hybrid approach where the duplicates after a failure are
included dynamically during the runtime of a schedule and therefore lead to a lower
performance, but also to a better placement of duplicates. Additionally, the second
approach is in contrast to the first approach restricted to only one failure at a time.
In this work only permanent faults (failures) are considered. Another extension
could be to include also the toleration of temporary faults, where a PU is available

again after some time.

143

Energy Efficiency The energy consumption in case of a failure can be improved
for strategy S9 by using a more complex distribution for the power budget. The
number of feasible solutions for strategy S8 and also the energy consumption in
case of a failure can be improved by considering a certain percentage value for the
communication time when calculating a new frequency. As the scheduling time of
strategies S7 - S9 is small compared to the schedule runtime, another approach is
to calculate the energy and makespan for all strategies in the fault case and choose
the best one according to the users’ preferences. Another approach to save energy
can be done by considering also the frequency scaling for the network in use. For
example, the Intel SCC offers 2 frequency levels for the network: 800 MHz and 1600
MHz.

Optimization One question that arose during the creation of the ILPs in this
work, but that is not considered in this thesis is, if it is possible to find the max-
imum number of PUs necessary for an energy optimal solution with the help of
the information from a performance optimal solution and the task graph when the
deadline is set to the makespan of the performance optimal schedule. For example,
the number of PUs for an energy optimal solution must be at least as high as the
number of the performance optimal solution, because otherwise the schedule would
be prolonged and thus the deadline cannot be met. On the other side, an energy
optimal solution might need more PUs than the performance optimal solution to

get more possibilities to scale down tasks.

Power Modeling In this thesis a very simple power model is used for the intel
processors. This model might be improved by including more details into this model.
Also other components of a computer system might be included into the overall
energy rating, like the energy consumption for the memory controller or for the
hard disks. Another possibility is to find a power model for processors, that have no
separate voltage regulators like the discussed i5 desktop processor or the i7 laptop
processor. Then, new strategies and heuristics can be implemented, that consider

frequency scaling only for all cores together and not independently.

Runtime System The prototype runtime system can be extended by including
complete messages for the communication and not only the message header. Addi-
tionally, the runtime system can be adapted to support real applications based on

a task graph instead of simulated workloads.

144

Bibliography

[

4]

5]

(6]

17l

8]

J. H. Abawajy, “Fault-tolerant Scheduling Policy for Grid Computing Sys-
tems,” in Proceedings of the 18th International Parallel and Distributed Pro-
cessing Symposium (IPDPS °04). 1EEE, 2004, pp. 238-245.

T. L. Adam, K. M. Chandy, and J. Dickson, “A Comparison of List Schedules
for Parallel Processing Systems,” Communications of the ACM, vol. 17, no. 12,
pp. 685-690, 1974.

N. Agarwal, P. Chauhan, and D. Nitin, “Fault-tolerant Heterogeneous Lim-
ited Duplication Scheduling Algorithm for Decentralized Grid,” International
Journal of Computers & Technology (IJCT), vol. 4, no. 3, pp. 765-775, 2013.

I. Ahmad, Y.-K. Kwok, and M.-Y. Wu, “Analysis, Evaluation, and Com-
parison of Algorithms for Scheduling Task Graphs on Parallel Processors,”
in Proceedings of the 2nd International Symposium on Parallel Architectures,
Algorithms, and Networks (I-SPAN ’96), Jun 1996, pp. 207-213.

K. Ahn, J. Kim, and S. Hong, “Fault-tolerant Real-time Scheduling Using
Passive Replicas,” in Proceedings of the Pacific Rim International Symposium

on Fault-Tolerant Systems (PRFTS °97). 1EEE, 1997, pp. 98-103.

B. Alam and A. Kumar, “Fault Tolerance Issues in Real Time Systems with
Energy Minimization,” International Journal of Information and Computation
Technology (1JICT), vol. 3, no. 10, pp. 1001-1008, 2013.

S. Albers, “Energy-efficient Algorithms,” Communications of the ACM,
vol. 53, mo. 5, pp. 86-96, May 2010. [Online|. Available: http:
//doi.acm.org/10.1145/1735223.1735245

D. G. Amalarethinam and G. J. Mary, “A New DAG-based Dynamic Task
Scheduling Algorithm (DYTAS) for Multiprocessor Systems,” International
Journal of Computer Applications, vol. 19, no. 8, pp. 24-28, April 2011.

http://doi.acm.org/10.1145/1735223.1735245
http://doi.acm.org/10.1145/1735223.1735245

191

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P. R. Amestoy, A. Guermouche, J.-Y. [’Excellent, and S. Pralet, “Hybrid
Scheduling for the Parallel Solution of Linear Systems,” Parallel Computing,
vol. 32, no. 2, pp. 136-156, 2006.

C. Anglano and M. Canonico, “Fault-Tolerant Scheduling for Bag-of-Tasks
Grid Applications,” in Proceedings of the European Grid Conference (EuroGrid
'05). Lecture Notes in Computer Science. Springer, 2005, p. 630.

ARM Ltd., “White Paper: big. LITTLE Technology: The Future of Mobile,”
2013. [Online|. Available: https://www.arm.com/files/pdf/big LITTLE
Technology the Futue of Mobile.pdf

G. Aupy, A. Benoit, P. Renaud-Goud, and Y. Robert, “Energy-aware Algo-
rithms for Task Graph Scheduling, Replica Placement and Checkpoint Strate-
gies,” in Handbook on Data Centers. Springer New York, 2015, pp. 37-80.

G. Aupy, A. Benoit, H. Casanova, and Y. Robert, “Checkpointing Strategies
for Scheduling Computational Workflows,” International Journal of Network-
ing and Computing (IJNC), vol. 6, no. 1, pp. 2-26, 2016.

C. R. Babu and C. S. Rao, “Automatic Checkpointing-based Fault Tolerance
in Computational Grid,” in Proceedings of the International Conference on

Computing, Management and Telecommunications (ComManTel °14). 1EEE,
2014, pp. 41-45.

S. D. Babu, C. R. Babu, and C. S. Rao, “An Efficient Fault Tolerance Tech-
nique Using Checkpointing and Replication in Grids Using Data Logs,” In-

ternational Journal Publications of Problems and Applications in Engineering

Research (IJPAPER), 2013.

J. Balasangameshwara, “Survey on Job Scheduling, Load Balancing and
Fault Tolerance Techniques for Computational Grids,” Global Journal
of Technology and Optimization, vol. 6:1, 2014. [Online]. Available:
http://dx.doi.org/10.4172/2229-8711.1000169

M. Balpande and U. Shrawankar, “Checkpointing-based Fault-tolerant Job
Scheduling System for Computational Grid,” International Journal of Ad-
vancements in Technology (IJACT), vol. 5, no. 2, 2014.

i

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
http://dx.doi.org/10.4172/2229-8711.1000169

18]

[19]

20]

21]

22|

23]

[24]

[25]

26]

M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-aware
Scheduling for Real-time Systems: A Survey,” ACM Transactions on Em-
bedded Computing Systems (TECS), vol. 15, no. 1, 2016.

S. Bansal, P. Kumar, and K. Singh, “An Improved Duplication
Strategy for Scheduling Precedence Constrained Graphs in Multiprocessor
Systems,” IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 14, mno. 6, pp. 533-544, Jun. 2003. [Online|. Available: http:
//dx.doi.org/10.1109/TPDS.2003.1206502

P. Baptiste, “Scheduling Unit Tasks to Minimize the Number of Idle
Periods: A Polynomial Time Algorithm for Offline Dynamic Power
Management,” in Proceedings of the 17th Annual ACM-SIAM Symposium
on Discrete Algorithm (SODA °06). Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2006, pp. 364-367. [Online|. Available:
http://dl.acm.org/citation.cfm?id=1109557.1109598

B. Barney. (2010) POSIX Threads Programming. [Online|. Available:

https://computing.llnl.gov /tutorials /pthreads/

—— (2016) Introduction to Parallel Computing. [Online|. Available:

https://computing.llnl.gov/tutorials/parallel comp/

R. Basmadjian and H. de Meer, “Evaluating and Modeling Power Consump-
tion of Multi-core Processors,” in Proceedings of the 3rd International Con-
ference on Future Systems: Where Energy, Computing and Communication
Meet (e-Energy '12), May 2012, pp. 1-10.

A. Benoit, M. Hakem, and Y. Robert, “Fault-tolerant Scheduling of Prece-
dence Task Graphs on Heterogeneous Platforms,” in Proceedings of the 22nd
International Symposium on Parallel and Distributed Processing (IPDPS "08).
IEEE, April 2008, pp. 1-8.

——, “Fault-tolerant Scheduling of Precedence Task Graphs on Heterogeneous

Platforms,” in Proceedings of the 22nd International Symposium on Parallel
and Distributed Processing (IPDPS ’08). TEEE, 2008, pp. 1-8.

K. Berry, F. Navarro, and C. Liu, “Application-level Voltage and
Frequency Tuning of Multi-phase Program on the SCC,” in Proceedings
of the 3rd International Workshop on Adaptive Self-Tuning Computing

1l

http://dx.doi.org/10.1109/TPDS.2003.1206502
http://dx.doi.org/10.1109/TPDS.2003.1206502
http://dl.acm.org/citation.cfm?id=1109557.1109598
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/parallel_comp/

27]

28]

29]

[30]

[31]

32]

33]

[34]

Systems (ADAPT °13). ACM, 2013, pp. 1:1-1:7. [Online|. Available:
http://doi.acm.org/10.1145/2484904.2484905

P. Bjorn-Jorgensen and J. Madsen, “Critical Path Driven Cosynthesis for
Heterogeneous Target Architectures,” in Proceedings of the 5th International
Workshop on Hardware/Software Co-Design. IEEE Computer Society, 1997.

W. Bland, “User Level Failure Mitigation in MPL,” in Proceedings of the FEu-
ropean Conference on Parallel Processing (Euro-Par 2012). Springer, 2012,
pp- 499-504.

C. Blum, “Ant Colony Optimization: Introduction and Recent Trends,”
Physics of Life Reviews, vol. 2, no. 4, pp. 353-373, 2005.

A. Bode, K. Kran, U. Briining, M. Cin, W. Héndler, F. Hertweck,
U. Herzog, F. Hofmann, R. Klar, C. Linster et al., Parallelrechner:
Architekturen - Systeme - Werkzeuge, ser. XLeitfaden der Informatik.
Vieweg+Teubner Verlag, 1995. [Online|. Available: https://books.google.de/
books?id=0pMePQAACAAJ

C. Bolchini, M. Carminati, and A. Miele, “Self-adaptive Fault Tolerance in
Multi- /Many-core Systems,” Journal of Electronic Testing, vol. 29, no. 2, pp.
159-175, 2013.

D. Bozdag, U. Catalyurek, and F. Ozgiiner, “A Task Duplication Based
Bottom-up Scheduling Algorithm for Heterogeneous Environments,” in
Proceedings of the 20th International Conference on Parallel and Distributed
Processing (IPDPS °06). IEEE Computer Society, 2006, pp. 160-160.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1898953.1899086

D. Bozdag, F. Ozgiiner, E. Ekici, and U. Catalyurek, “A Task Duplication
Based Scheduling Algorithm Using Partial Schedules,” in Proceedings of the
34th International Conference on Parallel Processing (ICPP ’05). 1EEE,
2005, pp. 630-637.

T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloéni, M. Maheswaran,
A. 1. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen,
and R. F. Freund, “A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous Distributed
Computing Systems,” Journal of Parallel and Distributed Computing,

v

http://doi.acm.org/10.1145/2484904.2484905
https://books.google.de/books?id=0pMePQAACAAJ
https://books.google.de/books?id=0pMePQAACAAJ
http://dl.acm.org/citation.cfm?id=1898953.1899086

35]

[36]

37]

38]

[39]

[40]

[41]

vol. 61, mno. 6, pp. 810 — 837, 2001. [Online|. Available: http:

/ /www.sciencedirect.com /science/article/pii/S0743731500917143

D. J. Brown and C. Reams, “Toward Energy-efficient Computing,”
Communications of the ACM, vol. 53, no. 3, pp. 50-58, Mar. 2010. [Online|.
Available: http://doi.acm.org/10.1145/1666420.1666438

A. Burkimsher, I. Bate, and L. S. Indrusiak, “A Survey of Scheduling
Metrics and an Improved Ordering Policy for List Schedulers Operating
on Workloads with Dependencies and a Wide Variation in Execution
Times,” International Journal of Future Generation Computer Systems,
vol. 29, mno. 8, pp. 2009 — 2025, 2013. [Online|]. Available: http:

/ /www.sciencedirect.com /science/article /pii/S0167739X12002257

Y. Cai, S. M. Reddy, and B. M. Al-Hashimi, “Reducing the Energy Consump-
tion in Fault-Tolerant Distributed Embedded Systems with Time-Constraint,”

in Proceedings of the 8th International Symposium on Quality Electronic De-
sign (ISQED’07), March 2007, pp. 368-373.

T. L. Casavant and J. G. Kuhl, “A Taxonomy of Scheduling in General-purpose
Distributed Computing Systems,” IEEE Transactions on Software Engineer-
ing, vol. 14, no. 2, pp. 141-154, 1988.

A. Chandak, B. Sahoo, and A. K. Turuk, “An Overview of Task Scheduling and
Performance Metrics in Grid Computing,” in Proceedings of the 2nd National
Conference-Computing, Communication and Sensor Network. Foundation of
Computer Science, New York, USA., 2011, pp. 30-33.

C. Y. Chen and C. P. Chu, “A 3.42-Approximation Algorithm for Schedul-
ing Malleable Tasks under Precedence Constraints,” IEEFE Transactions on
Parallel and Distributed Systems (TPDS), vol. 24, no. 8, pp. 1479-1488, Aug
2013.

G. Chen, K. Huang, and A. Knoll, “Energy Optimization for Real-time Multi-
processor System-on-chip with Optimal DVFS and DPM Combination,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 13, no. 3s, p. 111,
2014.

http://www.sciencedirect.com/science/article/pii/S0743731500917143
http://www.sciencedirect.com/science/article/pii/S0743731500917143
http://doi.acm.org/10.1145/1666420.1666438
http://www.sciencedirect.com/science/article/pii/S0167739X12002257
http://www.sciencedirect.com/science/article/pii/S0167739X12002257

42|

[43]

|44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

H. Cho, B. Ravindran, and E. D. Jensen, “An Optimal Real-Time Scheduling
Algorithm for Multiprocessors,” in Proceedings of the 27th IEEE International
Real-Time Systems Symposium (RTSS ’06), Dec 2006, pp. 101-110.

M. Chtepen, F. H. Claeys, B. Dhoedt, F. De Turck, P. Demeester, and P. A.
Vanrolleghem, “Adaptive Task Checkpointing and Replication: Toward Ef-
ficient Fault-tolerant Grids,” IEEFE Transactions on Parallel and Distributed
systems (TPDS), vol. 20, no. 2, pp. 180-190, 2009.

P. Cichowski, “Implementierung eines fehlertoleranten statischen Schedulers

fiir Grid-Anwendungen,” Diplomarbeit, FernUniversitit in Hagen, 2009.

P. Cichowski, J. Keller, and C. Kessler, “Modelling Power Consumption of
the Intel SCC,” in Proceedings of the 6th Many-core Applications Research
Community Symposium (MARC °12), E. Noulard and S. Vernhes, Eds.
Toulouse, France: ONERA, The French Aerospace Lab, Jul. 2012, pp. 46-51.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-00719033

B. Cirou and E. Jeannot, “Triplet: A Clustering Scheduling Algorithm for
Heterogeneous Systems,” in Proceedings of the 30th International Conference

on Parallel Processing Workshops (ICPP’01). 1EEE, 2001, pp. 231-236.

J. Cong and B. Yuan, “Energy-efficient Scheduling on Heterogeneous Multi-
core Architectures,” in Proceedings of the ACM/IEEE International Sympo-
sium on Low Power Electronics and Design (ISLPED ’12. ACM, 2012, pp.
345-350.

M. I. Daoud and N. Kharma, “An Efficient Genetic Algorithm for Task
Scheduling in Heterogeneous Distributed Computing Systems,” in Proceedings
of the IEEE International Conference on FEvolutionary Computation (CEC
'06), 2006, pp. 3258-3265.

——, “Efficient Compile-time Task Scheduling for Heterogeneous Distributed
Computing Systems,” in Proceedings of the 12th International Conference on

Parallel and Distributed Systems (ICPADS °06), vol. 1. 1IEEE, 2006, pp. 9-18.

F. Dong, “A Taxonomy of Task Scheduling Algorithms in the Grid,” Parallel
Processing Letters, vol. 17, no. 04, pp. 439-454, 2007.

E. Dubrova, Fault-Tolerant Design. Springer New York, 2013. [Online].
Available: https://books.google.de/books?id=FRs_ AAAAQBAJ

vi

https://hal.archives-ouvertes.fr/hal-00719033
https://books.google.de/books?id=FRs_AAAAQBAJ

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

K. Echtle, Fehlertoleranzverfahren. Springer, 1990.

P. Eitschberger and J. Keller, “Efficient and Fault-tolerant Static Scheduling
for Grids,” in Proceedings of the 14th IEEE International Workshop on Parallel
and Distributed Scientific and Engineering Computing (PDSEC ’13), 2013, pp.
1439-1448.

——, “Energy-Efficient and Fault-tolerant Taskgraph Scheduling for Many-
cores and Grids,” in Proceedings of the 1st Workshop on Runtime and Oper-
ating Systems for the Many-core Era (ROME ’13), 2013, pp. 769-778.

——, “Energy-Efficient Task Scheduling in Manycore Processors with Fre-
quency Scaling Overhead,” in Proceedings of the 23rd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing (PDP
’15), March 2015, pp. 541-548.

——, “Fault-Tolerant Parallel Execution of Workflows with Deadlines,” in
Proceedings of the 25th Furomicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing (PDP ’17), March 2017.

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,
“Dark Silicon and the End of Multicore Scaling,” in Proceedings of the
38th Annual International Symposium on Computer Architecture (ISCA ’11),
ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp. 365-376. [Online|.
Available: http://doi.acm.org/10.1145/2000064.2000108

G. E. Fagg and J. Dongarra, “FT-MPI: Fault Tolerant MPI, Supporting
Dynamic Applications in a Dynamic World,” in Proceedings of the
7th European PVM/MPI Users’ Group Meeting on Recent Advances
i Parallel Virtual Machine and Message Passing Interface. London,
UK, UK: Springer-Verlag, 2000, pp. 346-353. [Online|. Available: http:
//dl.acm.org/citation.cfm?id=648137.746632

B. Fechner, U. Honig, J. Keller, and W. Schiffmann, “Fault-Tolerant Static
Scheduling for Grids,” in Proceedings of the 13th IEEE Workshop on Depend-
able Parallel, Distributed and Network-Centric Systems (DPDNS °08), 2008,

pp. 1-6.

D. G. Feitelson and L. Rudolph, “Metrics and Benchmarking for Parallel
Job Scheduling,” in Proceedings of the Workshop on Job Scheduling

vil

http://doi.acm.org/10.1145/2000064.2000108
http://dl.acm.org/citation.cfm?id=648137.746632
http://dl.acm.org/citation.cfm?id=648137.746632

[61]

62]

63]

|64]

[65]

[66]

67]

68]

[69]

Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph,
Eds. Springer Berlin Heidelberg, 1998, pp. 1-24. [Online|. Available:
http://dx.doi.org/10.1007/BEFb0053978

M. J. Flynn, “Some Computer Organizations and Their Effectiveness,” IEFEFE
Transactions on Computers (TC), vol. C-21, no. 9, pp. 948-960, Sept 1972.

S. Forrest, “Genetic Algorithms,” ACM Computing Surveys, vol. 28, no. 1, pp.
77-80, Mar. 1996. |Online|. Available: http://doi.acm.org/10.1145/234313.
234350

I. Foster, Designing and Building Parallel Programs. Addison Wesley Pub-
lishing Company Reading, 1995, vol. 191.

Y. Gao, H. Rong, and J. Z. Huang, “Adaptive Grid Job Scheduling with
Genetic Algorithms,” Future Generation Computer Systems, vol. 21, no. 1,

pp. 151-161, 2005.

R. Garg and A. K. Singh, “Fault Tolerant Task Scheduling on Computational
Grid Using Checkpointing Under Transient Faults,” Arabian Journal for Sci-
ence and Engineering, vol. 39, no. 12, pp. 8775-8791, 2014.

F. C. Gértner, “Formale Grundlagen der Fehlertoleranz in verteilten
Systemen,” Ph.D. dissertation, Technische Universitat, Darmstadt, Juli 2001.
[Online|. Available: http://tuprints.ulb.tu-darmstadt.de/162/

R. Ge, X. Feng, and K. W. Cameron, “Performance-constrained Distributed
DVS Scheduling for Scientific Applications on Power-aware Clusters,” in Pro-
ceedings of the ACM/IEEE Supercomputing Conference (SC °05). 1EEE,
2005, pp. 34-34.

A. Gerasoulis and T. Yang, “A Comparison of Clustering Heuristics for
Scheduling Directed Acyclic Graphs on Multiprocessors,” Journal of Paral-
lel and Distributed Computing, vol. 16, no. 4, pp. 276-291, 1992.

R. Giroudeau, J.-C. Konig, F. K. Moulai, and J. Palaysi, “Complexity and
Approximation for Precedence Constrained Scheduling Problems with Large
Communication Delays,” Theoretical Computer Science, vol. 401, no. 1, pp.
107 — 119, 2008. [Online|. Available: http://www.sciencedirect.com /science/
article/pii/S0304397508002387

viil

http://dx.doi.org/10.1007/BFb0053978
http://doi.acm.org/10.1145/234313.234350
http://doi.acm.org/10.1145/234313.234350
http://tuprints.ulb.tu-darmstadt.de/162/
http://www.sciencedirect.com/science/article/pii/S0304397508002387
http://www.sciencedirect.com/science/article/pii/S0304397508002387

[70]

[71]

72|

73]

[74]

[75]

[76]

7]

78]

F. Glover and M. Laguna, Tabu Search. Norwell, MA, USA: Kluwer Academic
Publishers, 1997.

B. Goel and S. A. McKee, “A Methodology for Modeling Dynamic and Static
Power Consumption for Multicore Processors,” in Proceedings of the 30th IEEE
International Parallel and Distributed Processing Symposium (IPDPS °16),
May 2016, pp. 273-282.

S. Goswami and A. Das, “Deadline Stringency Based Job Scheduling in Com-
putational Grid Environment,” in Proceedings of the 2nd International Con-
ference on Computing for Sustainable Global Development (INDIACom ’15).
IEEE, 2015, pp. 531-536.

A. Grama, A. Gupta, G. Krypis, and V. Kumar, Introduction to Parallel
Computing, Second Edition. Addison Wesley, 2003.

E. Giinther, F. G. Ko6nig, and N. Megow, “Scheduling and Packing Malleable
Tasks with Precedence Constraints of Bounded Width,” in Proceedings of
the 7th International Workshop on Approzimation and Online Algorithms
(WAOA °09), Revised Papers. Springer Berlin Heidelberg, 2010, pp. 170-181.
[Online|. Available: http://dx.doi.org/10.1007/978-3-642-12450-1 16

S. Gupta, R. Rajak, G. K. Singh, and S. Jain, “Review of Task Duplication
Based (TDB) Scheduling Algorithms,” SmartCR, vol. 5, no. 1, pp. 67-75, 2015.

D. Hackenberg, R. Schone, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer,

)

“An Energy Efficient Feature Survey of the Intel Haswell Processor,” in Pro-
ceedings of the IEEE International Parallel and Distributed Processing Sym-

posium Workshop (IPDPSW ’15), May 2015, pp. 896-904.

M. Héhnel, B. Dobel, M. Voélp, and H. Hértig, “Measuring Energy Con-
sumption for Short Code Paths Using RAPL,” SIGMETRICS Performance
Fvaluation Review, vol. 40, no. 3, pp. 13-17, Jan. 2012. [Online|. Available:
http://doi.acm.org/10.1145/2425248.2425252

P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

1X

http://dx.doi.org/10.1007/978-3-642-12450-1_16
http://doi.acm.org/10.1145/2425248.2425252

791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

K. Hashimoto, T. Tsuchiya, and T. Kikuno, “Effective Scheduling of Dupli-
cated Tasks for Fault Tolerance in Multiprocessor Systems,” IEICE Transac-
tion on Information and Systems, pp. 525-534, 2002.

D. He and W. Mueller, “Online Energy-efficient Hard Real-time Scheduling
for Component Oriented Systems,” in Proceedings of the IEEE 15th Inter-
national Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing (ISORC ’12). 1EEE, 2012, pp. 56-63.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, Fifth Edition. Elsevier and Morgan Kaufmann Publishers, 2011.

Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation,
Phoenix Technologies Ltd., and Toshiba Corporation, Advanced Configura-
tion and Power Interface Specification Rev. 5.0, 2013.

W. Hongxia and Q. Xin, “Dynamic Replication of Fault-Tolerant Scheduling
Algorithm,” The Open Cybernetics € Systemics Journal, pp. 2670-2676, 2015.

C. U. Hoénig, “Optimales Task-Graph-Scheduling fiir homogene und
heterogene Zielsysteme,” Ph.D. dissertation, FernUniversitat in Hagen, 2008.
[Online]. Available: https://www.fernuni-hagen.de/imperia/md/content/

fakultaetfuermathematikundinformatik /forschung/berichte /bericht 342.pdf

U. Honig and W. Schiffmann, “Fast Optimal Task Graph Scheduling by Means
of an Optimized Parallel A*-Algorithm.” in Proceedings of the 20th Interna-

tional Conference on Parallel and Distributed Processing Techniques and Ap-
plications (PDPTA °04), 2004, pp. 842-848.

P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy Efficient
DVFS Scheduling for Mixed-criticality Systems,” in Proceedings of the
14th International Conference on Embedded Software (EMSOFT °14).
New York, NY, USA: ACM, 2014, pp. 11:1-11:10. [Online|. Available:
http://doi.acm.org/10.1145/2656045.2656057

S. Hunold, “Scheduling Moldable Tasks with Precedence Constraints
and Arbitrary Speedup Functions on Multiprocessors,” in Proceedings of

the 10th International Conference on Parallel Processing and Applied
Mathematics (PPAM ’13), Revised Selected Papers, Part II. Springer Berlin

https://www.fernuni-hagen.de/imperia/md/content/fakultaetfuermathematikundinformatik/forschung/berichte/bericht_342.pdf
https://www.fernuni-hagen.de/imperia/md/content/fakultaetfuermathematikundinformatik/forschung/berichte/bericht_342.pdf
http://doi.acm.org/10.1145/2656045.2656057

88

[89]

[90]

[91]

92|

193]

[94]

[95]

196]

197]

Heidelberg, 2014, pp. 13-25. [Online|. Available: http://dx.doi.org/10.1007/
978-3-642-55195-6 2

IBM Corproation, Blueprints: Using the Linux CPUFreq Subsystem for Enerqgy
Management, 2009.

IEA, International Energy Agency, “Energy Efficiency Indicators -
Fundamentals on Statistics,” 2014. [Online|. Available: /content/book/

9789264215672-en

E. llavarasan and P. Thambidurai, “Low Complexity Performance Effective
Task Scheduling Algorithm for Heterogeneous Computing Environments,”

Journal of Computer Sciences, vol. 3, no. 2, pp. 94-103, 2007.

Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual, System
Programming Guide, Part 2, 2016, vol. 3B.

Intel Labs, “The SCC Platform Overview,” May 2010.

V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Scheduling and Optimization
of Fault-Tolerant Embedded Systems with Transparency/Performance Trade-
Offs,” ACM Transactions of Embedded Computer Systems (TECS), vol. 11,
no. 3, pp. 61:1-61:35, Sep. 2012.

K. Jansen and H. Zhang, “An Approximation Algorithm for Scheduling
Malleable Tasks Under General Precedence Constraints,” ACM Transactions
on Algorithms (TALG), vol. 2, no. 3, pp. 416434, Jul. 2006. [Online|.
Available: http://doi.acm.org/10.1145/1159892.1159899

S. Jayadivya, J. S. Nirmala, and M. S. S. Bhanu, “Fault-tolerant Workflow
Scheduling Based on Replication and Resubmission of Tasks in Cloud Comput-
ing,” International Journal on Computer Science and Engineering (IJCSE),
vol. 4, no. 6, p. 996, 2012.

A. Jerraya and W. Wolf, Multiprocessor Systems-on-chips. Elsevier, 2004.

)

N. K. Jha, “Low Power System Scheduling and Synthesis,” in Proceedings of
the IEEE/ACM International Conference on Computer-aided Design (ICCAD
'01). Piscataway, NJ, USA: IEEE Press, 2001, pp. 259-263. [Online|.

Available: http://dl.acm.org/citation.cfm?id=603095.603147

X1

http://dx.doi.org/10.1007/978-3-642-55195-6_2
http://dx.doi.org/10.1007/978-3-642-55195-6_2
/content/book/9789264215672-en
/content/book/9789264215672-en
http://doi.acm.org/10.1145/1159892.1159899
http://dl.acm.org/citation.cfm?id=603095.603147

98]

[99]

[100]

101

[102]

[103]

[104]

105

Z. Jun, E. H. Sha, Q. Zhuge, J. Yi, and K. Wu, “Efficient Fault-tolerant
Scheduling on Multiprocessor Systems via Replication and Deallocation,” In-
ternational Journal of Embedded Systems (IJES), vol. 6, no. 2-3, pp. 216224,
2014.

K. Kanoun, N. Mastronarde, D. Atienza, and M. van der Schaar, “On-
line Energy-Efficient Task-Graph Scheduling for Multicore Platforms,” IEEFE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), vol. 33, no. 8, pp. 1194-1207, Aug 2014.

H. Kasahara, “Standard Task Graph Set,” http://www.kasahara.elec.waseda.

ac.jp/schedule/index.html, accessed: 2017-05-25.

H. Kasahara and S. Narita, “Practical Multiprocessor Scheduling Algorithms
for Efficient Parallel Processing,” IEEE Transactions on Computers, vol. 33,
no. 11, pp. 1023-1029, 1984.

G. Kaur, “A DAG Based Task Scheduling Algorithms for Multiprocessor
System-A Survey,” International Journal of Grid and Distributed Computing,
vol. 9, no. 9, pp. 103-114, 2016.

R. Kaur and R. Kaur, “Multiprocessor Scheduling Using Task Duplication
Based Scheduling Algorithms: A Review Paper,” International Journal of
Application or Innovation in Engineering and Management (IJAIEM), vol. 2,
no. 4, pp. 311-317, 2013.

C. W. Kessler, N. Melot, P. Eitschberger, and J. Keller, “Crown scheduling;:
Energy-efficient Resource Allocation, Mapping and Discrete Frequency Scal-
ing for Collections of Malleable Streaming Tasks,” in Proceedings of the 23rd

International Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS ’13), Sept 2013, pp. 215-222.

V. Kianzad, S. Bhattacharyya, and G. Ou, “CASPER: An Integrated
Energy-Driven Approach for Task Graph Scheduling on Distributed Embed-
ded Systems.” in Proceedings of the 16th IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP °05), 2005,
pp- 191-197.

x1i

http://www.kasahara.elec.waseda.ac.jp/schedule/index.html
http://www.kasahara.elec.waseda.ac.jp/schedule/index.html

[106]

[107]

[108]

[109]

[110]

111

[112]

[113]

114)

N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan, “Leakage Current: Moore’s Law
Meets Static Power,” Computer, vol. 36, no. 12, pp. 68-75, Dec 2003.

D. Kondo, H. Casanova, E. Wing, and F. Berman, “Models and Scheduling
Mechanisms for Global Computing Applications,” in Proceedings of the Inter-
national Parallel and Distributed Processing Symposium (IPDPS °02), April
2002, pp. 8-16.

B. Kruatrachue and T. Lewis, “Grain Size Determination for Parallel
Processing,” IEEE Software, vol. 5, no. 1, pp. 23-32, Jan. 1988. [Online].
Available: http://dx.doi.org/10.1109/52.1991

Y.-K. Kwok, “Parallel Program Execution on a Heterogenecous PC Cluster
Using Task Duplication,” in Proceedings of the 9th Heterogeneous Computing
Workshop (HCW ’00), 2000, pp. 364-374.

Y .-K. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Di-
rected Task Graphs to Multiprocessors,” ACM Computing Surveys, vol. 31,
no. 4, pp. 406-471, Dec. 1999.

D. Lee, D. Blaauw, and D. Sylvester, “Gate Oxide Leakage Current Analysis
and Reduction for VLSI Circuits,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 12, no. 2, pp. 155-166, 2004.

W. Y. Lee, “Energy-Saving DVFS Scheduling of Multiple Periodic Real-Time
Tasks on Multi-core Processors,” in Proceedings of the 15th IEEE/ACM In-

ternational Symposium on Distributed Simulation and Real Time Applications
(DS-RT °09), Oct 2009, pp. 216-223.

J. Lenhardt, “Energieeffiziente Verarbeitung fein granular verteilbarer Lasten
auf heterogenen Rechnerverbiinden,” Ph.D. dissertation, Hagen, 2016.
[Online|. Available: https://ub-deposit.fernuni-hagen.de/receive/mir mods
00000548

R. Lepére, D. Trystram, and G. J. Woeginger, “Approximation Algorithms
for Scheduling Malleable Tasks under Precedence Constraints,” in Proceedings
of the 9th Annual FEuropean Symposium on Algorithms (ESA ’01).
Springer Berlin Heidelberg, 2001, pp. 146-157. [Online|. Available:
http://dx.doi.org/10.1007/3-540-44676-1 12

xiil

http://dx.doi.org/10.1109/52.1991
https://ub-deposit.fernuni-hagen.de/receive/mir_mods_00000548
https://ub-deposit.fernuni-hagen.de/receive/mir_mods_00000548
http://dx.doi.org/10.1007/3-540-44676-1_12

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

K. Li, “Performance Analysis of Power-Aware Task Scheduling Algorithms on
Multiprocessor Computers with Dynamic Voltage and Speed,” IEEE Transac-
tions on Parallel and Distributed Systems (TPDS), vol. 19, no. 11, pp. 1484—
1497, Nov 2008.

Y. Li, M. Chen, W. Dai, and M. Qiu, “Energy Optimization With Dynamic
Task Scheduling Mobile Cloud Computing,” IEEE Systems Journal, vol. 11,
no. 1, pp. 96-105, 2017.

A. Litke, D. Skoutas, K. Tserpes, and T. Varvarigou, “Efficient Task Repli-
cation and Management for Adaptive Fault Tolerance in Mobile Grid Envi-

ronments,” Future Generation Computer Systems, vol. 23, no. 2, pp. 163-178,
2007.

J. W. S. W. Liu, Real-Time Systems, 1st ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2000.

Y. Liu, K. Li, Z. Tang, and L. Keqin, “Energy Aware List-based Scheduling
for Parallel Applications in Cloud,” Internationl Journal of Embedded Systems
(IJES), 2015.

R. Lopes and D. Menasce, “A Taxonomy of Job Scheduling on Distributed
Computing Systems,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 27, no. 12, pp. 3412-3428, 2016.

Y.-H. Lu, L. Benini, and G. De Micheli, “Low-power Task Scheduling for
Multiple Devices,” in Proceedings of the 8th International Workshop on
Hardware/Software Codesign (CODES ’00). New York, NY, USA: ACM,
2000, pp. 39-43. [Online|. Available: http://doi.acm.org/10.1145/334012.
334020

Y. Ma, B. Gong, and L. Zou, “Energy-efficient Scheduling Algorithm of Task
Dependent Graph on DVS-Unable Cluster System,” in Proceedings of the 10th
IEEE/ACM International Conference on Grid Computing (GridCom '09), Oct
2009, pp. 217-224.

——, “Energy-Optimization Scheduling of Task Dependent Graph on DVS-
Enabled Cluster System,” in Proceedings of the 5th Annual ChinaGrid Con-
ference, July 2010, pp. 183-190.

Xiv

http://doi.acm.org/10.1145/334012.334020
http://doi.acm.org/10.1145/334012.334020

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

B. S. Macey and A. Y. Zomaya, “A Performance Evaluation of CP List
Scheduling Heuristics for Communication Intensive Task Graphs,” in Proceed-
ings of the 12th International Parallel Processing Symposium (IPPS/SPDP
'98). 1EEE, 1998, pp. 538-541.

G. Manimaran and C. S. R. Murthy, “An Efficient Dynamic Scheduling Algo-
rithm for Multiprocessor Real-time Systems,” IEFEE Transactions on Parallel
and Distributed Systems (TPDS), vol. 9, no. 3, pp. 312-319, 1998.

N. Melot, C. Kessler, J. Keller, and P. Eitschberger, “Fast Crown Scheduling
Heuristics for Energy-Efficient Mapping and Scaling of Moldable Streaming
Tasks on Manycore Systems,” ACM Transactions on Architecture and Code
Optimization (TACO °15), vol. 11, no. 4, pp. 62:1-62:24, Jan. 2015.

Message Passing Interface Forum. (2012) MPI: A Message-Passing Interface
Standard, Version 3.0. [Online|. Available: https://www.mpi-forum.org/docs/

mpi-3.0/mpi30-report.pdf

A. Mishra and A. K. Tripathi, “Energy Efficient Task Scheduling of Send-
Receive Task Graphs on Distributed Multi-Core Processors with Software
Controlled Dynamic Voltage Scaling,” in International Journal of Computer
Science & Information Technology (IJCSIT), vol. 3, no. 2, 2011.

R. Mishra, N. Rastogi, D. Zhu, D. Mosse, and R. Melhem, “Energy Aware
Scheduling for Distributed Real-time Systems,” in Proceedings of the Inter-
national Parallel and Distributed Processing Symposium (IPDPS °03), April
2003, pp. 9 pp.—.

M. Nandagopal and V. R. Uthariaraj, “Fault Tolerant Scheduling Strategy
for Computational Grid Environment,” International Journal of Engineering
Science and Technology (JESTEC), vol. 2, no. 9, pp. 4361-4372, 2010.

B. Nazir and T. Khan, “Fault Tolerant Job Scheduling in Computational
Grid,” in Proceedings of the International Conference on Emerging Technolo-

gies (ICET "06), Nov 2006, pp. 708-713.

B. Nazir, K. Qureshi, and P. Manuel, “Adaptive Checkpointing Strategy to
Tolerate Faults in Economy Based Grid,” The Journal of Supercomputing,
vol. 50, no. 1, pp. 1-18, 2009.

XV

https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

133

[134]

[135]

[136]

[137]

[138]

[139]

[140]

141

[142]

L. Niu and G. Quan, “A Hybrid Static/Dynamic DVS Scheduling for Real-time
Systems with (m, k)-guarantee,” in Proceedings of the 26th IEEE International
Real-Time Systems Symposium (RTSS ’05). IEEE, 2005, pp. 10—pp.

V. G. Oklobdzija, The Computer Engineering Handbook. CRC Press, 2001.

F. A. Omara and M. M. Arafa, “Genetic Algorithms for Task Scheduling
Problem,” Journal of Parallel and Distributed Computing, vol. 70, no. 1,
pp. 13-22, 2010. [Online|. Available: http://www.sciencedirect.com /science/
article/pii/S0743731509001804

OpenMP Architecture Review Board. (2013) OpenMP Application Program
Interface, Version 4.0 - July 2013. [Online|. Available: http://www.openmp.
org/mp-documents/OpenMP4.0.0.pdf

B. K. Panigrahi, Y. Shi, and M.-H. Lim, Handbook of Swarm Intelligence:
Concepts, Principles and Applications, 1st ed. Springer Publishing Company,
Incorporated, 2011.

C. Papadimitriou and M. Yannakakis, “Towards an Architecture-independent
Analysis of Parallel Algorithms,” in Proceedings of the 20th Annual ACM
Symposium on Theory of Computing (STOC ’88). New York, NY, USA:
ACM, 1988, pp. 510-513. [Online|. Available: http://doi.acm.org/10.1145/
62212.62262

B. Parhami, Introduction to Parallel Processing. Kluwer Academic Publishers,
1999.

F. Pinel, B. Dorronsoro, J. E. Pecero, P. Bouvry, and S. U. Khan, “A Two-
phase Heuristic for the Energy-efficient Scheduling of Independent Tasks on
Computational Grids,” Cluster Computing, vol. 16, no. 3, pp. 421-433, 2013.

D. Poola, K. Ramamohanarao, and R. Buyya, “Fault-tolerant Workflow
Scheduling Using Spot Instances on Clouds,” Procedia Computer Science,
vol. 29, pp. 523-533, 2014.

——, “Enhancing Reliability of Workflow Execution Using Task Replication
and Spot Instances,” ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS), vol. 10, no. 4, p. 30, 2016.

Xvi

http://www.sciencedirect.com/science/article/pii/S0743731509001804
http://www.sciencedirect.com/science/article/pii/S0743731509001804
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://doi.acm.org/10.1145/62212.62262
http://doi.acm.org/10.1145/62212.62262

[143]

[144)

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

Z. Pooranian, M. Shojafar, R. Tavoli, M. Singhal, and A. Abraham, “A Hy-
brid Metaheuristic Algorithm for Job Scheduling on Computational Grids,”
Informatica, vol. 37, no. 2, p. 157, 2013.

S. Porto and C. C. Ribeiro, “A Tabu Search Approach to Task
Scheduling on Heterogeneous Processors under Precedence Constraints,”
International Journal of High Speed Computing, vol. 07, no. 01, pp. 45-71,
1995. [Online|. Available: http://www.worldscientific.com/doi/abs/10.1142/
S012905339500004X

T. Prashar and D. Kumar, “Fault Tolerant ACO Using Checkpoint in Grid
Computing,” International Journal of Computer Applications (IJCA), vol. 98,
no. 10, 2014.

S. B. Priya, M. Prakash, and K. Dhawan, “Fault Tolerance-Genetic Algorithm
for Grid Task Scheduling Using Check Point,” in Proceedings of the 6th Inter-
national Conference on Grid and Cooperative Computing (GCC ’07). TEEE,
2007, pp. 676-680.

K. Pruhs, R. van Stee, and P. Uthaisombut, “Speed Scaling of Tasks with
Precedence Constraints,” Theory of Computing Systems, vol. 43, no. 1, pp.
67-80, 2008.

L. L. Pullum, Software Fault Tolerance Techniques and Implementation. Nor-
wood, MA, USA: Artech House, Inc., 2001.

S. Punnekkat, A. Burns, and R. Davis, “Analysis of Checkpointing for Real-
time Systems,” Real-Time Systems, vol. 20, no. 1, pp. 83-102, 2001.

M. Rahman, S. Venugopal, and R. Buyya, “A Dynamic Critical Path Algo-
rithm for Scheduling Scientific Workflow Applications on Global Grids,” in
Proceedings of the 2nd IEEE International Conference on e-Science and Grid
Computing, Dec 2007, pp. 35—42.

K. Ramamritham and J. A. Stankovic, “Dynamic Task Scheduling in Hard
Real-time Distributed Systems,” IEEFE Software, vol. 1, no. 3, p. 65, 1984.

R.-D. Reiss, M. Thomas, and R. Reiss, Statistical Analysis of Extreme Values.
Springer, 2007, vol. 2.

XVil

http://www.worldscientific.com/doi/abs/10.1142/S012905339500004X
http://www.worldscientific.com/doi/abs/10.1142/S012905339500004X

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

N. B. Rizvandi and A. Y. Zomaya, “A Primarily Survey on FKEnergy
Efficiency in Cloud and Distributed Computing Systems,” Computing
Research Repository (CoRR), vol. abs/1210.4690, 2012. [Online|. Available:
http:/ /arxiv.org/abs/1210.4690

N. Romli, K. Minhad, M. M. I. Reaz, and M. S. Amin, “An Overview of
Power Dissipation and Control Techniques in CMOS Technology,” Journal of
Engineering Science and Technology (JESTEC), vol. 10, no. 3, pp. 364-382,
2015.

P. Rong and M. Pedram, “Power-aware Scheduling and Dynamic Voltage Set-
ting for Tasks Running on a Hard Real-time System,” in Proceedings of the
11th Asia and South Pacific design automation conference (ASP-DAC °06).
IEEE Press, 2006, pp. 473-478.

H. G. Rotithor, “Taxonomy of Dynamic Task Scheduling Schemes in Dis-
tributed Computing Systems,” IEE Proceedings - Computers and Digital Tech-
niques, vol. 141, no. 1, pp. 1-10, 1994.

X. Ruan, X. Qin, Z. Zong, K. Bellam, and M. Nijim, “An Energy-Efficient
Scheduling Algorithm Using Dynamic Voltage Scaling for Parallel Applications
on Clusters,” in Proceedings of the 16th International Conference on Computer

Communications and Networks (ICCCN ’07), Aug 2007, pp. 735-740.

R. A. Rutenbar, “Simulated Annealing Algorithms: An Overview,” IEEFE Cir-
cuits and Devices Magazine, vol. 5, no. 1, pp. 19-26, Jan 1989.

H. F. Sheikh and I. Ahmad, “Dynamic Task Graph Scheduling on Multicore
Processors for Performance, Energy, and Temperature Optimization,” in Pro-
ceedings of the Jth International Green Computing Conference (IGCC ’13),
June 2013, pp. 1-6.

H. Shioda, K. Konishi, and S. Shin, “Optimal Task Scheduling Algorithm
for Parallel Processing,” in Proceedings of the 2nd International Congress
on Computer Applications and Computational Science (CACS ’12),
vol. 2. Springer Berlin Heidelberg, 2012, pp. 79-87. [Online|. Available:
http://dx.doi.org/10.1007 /978-3-642-28308-6 11

M. Shojafar, S. Javanmardi, S. Abolfazli, and N. Cordeschi, “FUGE: A Joint
Meta-heuristic Approach to Cloud Job Scheduling Algorithm Using Fuzzy

Xvill

http://arxiv.org/abs/1210.4690
http://dx.doi.org/10.1007/978-3-642-28308-6_11

[162]

[163]

[164]

165

[166]

[167]

168

[169]

[170]

Theory and a Genetic Method,” Cluster Computing, vol. 18, no. 2, pp. 829—
844, 2015.

J. Singh and N. Auluck, “DVFS and Duplication Based Scheduling for Op-
timizing Power and Performance in Heterogeneous Multiprocessors,” in Pro-
ceedings of the High Performance Computing Symposium, ser. HPC 14, 2014,
pp- 22:1-22:8.

M. Singh, “Incremental Checkpoint Based Failure-aware Scheduling Algorithm
in Grid Computing,” in Proceedings of the International Conference on Com-
puting, Communication and Automation (ICCCA °16). 1EEE, 2016, pp.
TT2-TT78.

O. Sinnen, Task Scheduling for Parallel Systems. John Wiley & Sons, 2007.

A. M. Sllame and V. Drabek, “An Efficient List-based Scheduling Algorithm
for High-level Synthesis,” in Proceedings of the Euromicro Symposium on Dig-

ital System Design (DSD ’02). TEEE, 2002, pp. 316-323.

M. Stanisavljevi¢, A. Schmid, and Y. Leblebici, Reliability of Nanoscale Cir-
cuits and Systems: Methodologies and Circuit Architectures. Springer Science
& Business Media, 2010.

J. Stoll, Fehlertoleranz in verteilten Realzeitsystemen: Anwendungsorientierte
Techniken, ser. Informatik-Fachberichte. Springer-Verlag, 1990. [Online].
Available: https://books.google.de/books?id=fSq4AAAATAAJ

V. Subramani, R. Kettimuthu, S. Srinivasan, and S. Sadayappan, “Distributed
Job Scheduling on Computational Grids Using Multiple Simultaneous Re-
quests,” in Proceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing (HPDC ’02). 1EEE, 2002, pp. 359-366.

N. Tabba, R. Entezari-Maleki, and A. Movaghar, “Reduced Communications
Fault Tolerant Task Scheduling Algorithm for Multiprocessor Systems,” Pro-
cedia Engineering, vol. 29, pp. 3820-3825, 2012, 2012 International Workshop

on Information and Electronics Engineering.

I. Takouna, W. Dawoud, and C. Meinel, “Accurate Mutlicore Processor Power
Models for Power-Aware Resource Management,” in Proceedings of the IEEE

9th International Conference on Dependable, Autonomic and Secure Comput-
ing (DASC ’11), Dec 2011, pp. 419-426.

Xix

https://books.google.de/books?id=fSq4AAAAIAAJ

[171]

[172]

[173]

[174]

[175]

[176]

177]

178

[179)

[180]

[181]

A. S. Tanenbaum, Structured Computer Organization, Fifth Edition. Pearson
Prentice Hall, 2006.

——, Modern Operating Systems. Pearson Education, 2009.

J. Thaman and M. Singh, “Current Perspective in Task Scheduling Techniques
in Cloud Computing: A Review,” International Journal in Foundations of
Computer Science & Technology, vol. 6, pp. 65-85, 2016.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and Low-
complexity Task Scheduling for Heterogeneous Computing,” IEEE Transac-
tions on Parallel and Distributed Systems (TPDS), vol. 13, no. 3, pp. 260274,
Mar 2002.

S. Tosun, N. Mansouri, M. Kandemir, and O. Ozturk, “An ILP Formulation

Y

for Task Scheduling on Heterogeneous Chip Multiprocessors,” in Proceedings

of the 21st International Symposium on Computer and Information Sciences
(ISCIS °06). Springer Berlin Heidelberg, 2006, pp. 267-276.

M. Treaster, “A Survey of Fault-Tolerance and Fault-Recovery Techniques in
Parallel Systems,” Computing Research Repository (CoRR), 2005. |Online].
Available: http://arxiv.org/abs/cs/0501002

T. Tsuchiya, Y. Kakuda, and T. Kikuno, “A New Fault-tolerant Scheduling
Technique for Real-time Multiprocessor Systems,” in Proceedings of the 2nd

International Workshop on Real-Time Computing Systems and Applications
(RTCSA 95). 1EEE, 1995, pp. 197-202.

University of Tennessee, “Power APL” http://icl.cs.utk.edu/projects/papi/
wiki/Main Page, accessed: 2017-03-21.

F. Vahid and T. Givargis, Embedded System Design: A Unified Hardware,/ -
Software Introduction. New York: Wiley, 2002.

L. Wang, G. von Laszewski, J. Daya, and F. Wang, “Towards Energy Aware
Scheduling for Precedence Constrained Parallel Tasks in a Cluster with
DVFS,” in Proceedings of the 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing (CCGrid '10), May 2010, pp. 368-377.

Y. Wang, D. Liu, M. Wang, Z. Qin, and Z. Shao, “Optimal Task Scheduling

by Removing Inter-Core Communication Overhead for Streaming Applications

XX

http://arxiv.org/abs/cs/0501002
http://icl.cs.utk.edu/projects/papi/wiki/Main_Page
http://icl.cs.utk.edu/projects/papi/wiki/Main_Page

[182]

[183)]

[184]

[185]

[186]

[187]

[188]

[189)

on MPSoC,” in Proceedings of the 16th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS °10), April 2010, pp. 195-204.

J. B. Weissman and D. Womack, Fault Tolerant Scheduling in Distributed
Networks. Division of Computer Science, the University of Texas [at] San
Antonio, 1996.

J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P. M.
Melliar-Smith, R. E. Shostak, and C. B. Weinstock, “SIFT: Design and Anal-
ysis of a Fault-tolerant Computer for Aircraft Control,” Proceedings of the
IEFEE, vol. 66, no. 10, pp. 1240-1255, 1978.

B. Wilkinson and M. Allen, Parallel Programming: Techniques and Applica-
tions Using Networked Workstations and Parallel Computers (2nd Edition).
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2004.

C.-Y. Yang, J.-J. Chen, and T.-W. Kuo, “An Approximation Algorithm for
Energy-efficient Scheduling on a Chip Multiprocessor,” in Design, Automation
and Test in Furope, March 2005, pp. 468-473 Vol. 1.

T. Yang and A. Gerasoulis, “A Fast Static Scheduling Algorithm for DAGs
on an Unbounded Number of Processors,” in Proceedings of the ACM/IEEE
Conference on Supercomputing (ICS '91). New York, NY, USA: ACM, 1991,
pp. 633-642. |Online|. Available: http://doi.acm.org/10.1145/125826.126138

S. Yi, D. Kondo, B. Kim, G. Park, and Y. Cho, “Using Replication and
Checkpointing for Reliable Task Management in Computational Grids,” in
Proceedings of the International Conference on High Performance Computing

Simulation (HPCS ’10), June 2010, pp. 125-131.

M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Sto-
ica, “Job Scheduling for Multi-user Mapreduce Clusters,” Journal Electrical
Engineering and Computer Siences (EECS), 2009.

D. S. Zhang, F. Y. Chen, H. H. Li, S. Y. Jin, and D. K. Guo, “An Energy-
Efficient Scheduling Algorithm for Sporadic Real-Time Tasks in Multiproces-
sor Systems,” in Proceedings of the IEEE International Conference on High

Performance Computing and Communications (HPCC ’11), Sept 2011, pp.
187-194.

xx1

http://doi.acm.org/10.1145/125826.126138

[190]

[191]

[192]

193]

[194]

H. Zhang and H. Hoffman, “A Quantitative Evaluation of the RAPL Power
Control System,” Feedback Computing, 2015.

Y. Zhang, C. Koelbel, and K. Cooper, “Hybrid Re-scheduling Mechanisms
for Workflow Applications on Multi-cluster Grid,” in Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGRID ’09), May 2009, pp. 116-123.

Y. Zhang, Y. Inoguchi, and H. Shen, “A Dynamic Task Scheduling
Algorithm for Grid Computing System,” in Proceedings of the 2nd
International Symposium on Parallel and Distributed Processing and
Applications (ISPA °04), J. Cao, L. T. Yang, M. Guo, and F. Lau,
Eds. Springer Berlin Heidelberg, 2005, pp. 578-583. |Online|. Available:
http://dx.doi.org/10.1007/978-3-540-30566-8 69

L. Zhao, Y. Ren, Y. Xiang, and K. Sakurai, “Fault-tolerant Scheduling with
Dynamic Number of Replicas in Heterogeneous Systems,” in Proceedings of
the 12th IEEE International Conference on High Performance Computing and
Communications (HPCC ’10), Sept 2010, pp. 434-441.

S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, “Survey
of Energy-cognizant Scheduling Techniques,” IEEE Transactions on Parallel
and Distributed Systems (TPDS), vol. 24, no. 7, pp. 1447-1464, 2013.

Xxi1

http://dx.doi.org/10.1007/978-3-540-30566-8_69

Curriculum Vitae

Personal Data

Name:
Birth:
Address:

Patrick Eitschberger (né Cichowski)
Dorsten, Germany — 26 August 1982
Thielenstr. 30, 44369 Dortmund, Germany

Academic Career and Education

Since 2012

Okt 2009 - Dec 2011

Okt 2003 - Aug 2009

Aug 1999 - Jun 2002

Doctoral Student, Faculty of Mathematics and Com-
puter Science, FernUniversitat in Hagen, Germany

Master of Computer Science, FernUniversitat in Ha-
gen, Germany
Specialization: Computing Systems

Diplom Informatiker (Diplom I), FernUniversitét
in Hagen, Germany

Minor Subject: Business Studies

Assistant Tax Consultant, Tax Consultancy W. Ci-
chowski, Dorsten, Germany

xxili

Employments

Since Jan 2012 FernUniversitdt in Hagen, Faculty of Mathematics and
Computer Science, Parallelism & VLSI Group, Hagen,
Germany

Research Assistant, full-time

Aug 2009 - Dez 2011 | FernUniversitdt in Hagen, Faculty of Mathematics and
Computer Science, Computer Architecture Group, Ha-
gen, Germany

Research Assistant, part-time while studying

Nov 2005 - May 2009 | Shell-Station Sondram & Taoka GmbH, Dortmund, Ger-
many
Cashier, part-time while studying

Jul 2003 - Jun 2005 Tax Consultancy W. Cichowski, Dorsten, Germany
Assistant Tax Consultant, part-time while studying

Jul 2002 - Aug 2002 Tax Consultancy W. Cichowski, Dorsten, Germany

Assistant Tax Consultant, full-time

XX1V

	Diss_Eitschberger_Scheduling_Manycores_Grids_Titelblatt
	Diss_Eitschberger_Scheduling_Manycores_Grids_Text
	List of Tables
	List of Figures
	Listings
	List of Abbreviations
	Introduction
	Background
	Parallel Platforms
	Types
	Classifications

	Parallel Applications
	Design
	Models
	Implementation

	Scheduling
	Classification
	Performance and Cost Metrics

	Fault Tolerance
	Classification of Faults
	Failure Models
	Fault-tolerant Scheduling
	Fault Tolerance in MPI

	Energy Efficiency
	Energy Consumption
	Modeling
	Energy-efficient Scheduling
	From the Model to the Real World
	Measuring Power Consumption

	Trade-off between Performance, Fault Tolerance and Energy Consumption
	Two-dimensional Optimization
	Performance vs. Fault Tolerance
	Performance vs. Energy Consumption
	Fault Tolerance vs. Energy Consumption

	Fault-free Case vs. Fault Case
	Three-dimensional Optimization: Performance vs. Fault Tolerance vs. Energy Consumption
	Estimation of Upper/Lower Bounds
	Performance
	Fault Tolerance
	Energy Consumption

	Fault-tolerant and Energy-efficient Scheduling
	Assumptions
	Fault-tolerant Scheduling Heuristics
	Previous Work
	Use Half PUs for Originals (UHPO)
	Excursion: Use Duplicates for Delayed Tasks

	Energy-efficient Scheduling Heuristics and Options
	Buffer for Energy Reduction (BER)
	Option: Insert Order (SDE vs. SED)
	Change Base Frequency (CBF)
	Energy for Performance (EP)
	Option: Delete Unnecessary Duplicates (DUD)
	Lazy Frequency Re-scaling (LFR)
	Constant Power (CP)
	Option: Maximum Makspan Increase (MMI)

	User Preferences and Corresponding Strategies
	Valid Combinations
	Strategies Fault-free Case
	Strategies Fault Case

	Energy-optimal Solutions and Approximations
	Fault-free Case
	Fault Case

	A Fault-tolerant and Energy-efficient Runtime System
	System Check Tool
	Runtime System
	Power Model

	Experiments
	Test Environment
	Test Sets
	Test Systems

	Experiments with a Generalized Power Model
	Strategies S1 & S2
	Strategies S3 & S4
	Strategy S5
	Strategy S6
	Comparison of Strategies for the Fault-free Case
	Strategy S7
	Strategies S8 & S9

	Experiments on Real World Platforms
	Intel i7 3630qm, Intel i5 4570 and Intel i5 E1620
	Intel SCC

	Analysis of the Scheduling Time
	Summary & Discussion

	Conclusions
	Outlook
	Bibliography

