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Abstract 

We present a new dass of curves which are self-approaching in the following 

sense. For any three consecutive points a, b, c on the curve the point b is 

closer to c than a to c. This is a generalisation of curves with increasing chords 

which are self-approaching in both directions. We show a tight upper bound of 

5.3331 ... for the length of a self-approaching curve over the distance between 

its endpoints. 

Keywords. Curves with increasing chords, self-approaching curves, convex 

hull, detour, arc length. 

1 Introduction 

Let C be an oriented curve in the plane. We call C self-approaching, iff for any three 
consecutive points a, b, ,c in oriented order on C, the inequality 

d(a, c) 2:: d(b, c) 

holds. In other words, while walking along a self-approaching curve, one gets closer 
to each point of the curve that has not yet been passed. 

The question studied in this paper is the following: Is this property strong enough 
to ensure that the detour a self-approaching curve makes while running from a to 
b, i. e. the ratio of the length of the connecting curve segment over the Euclidian 
distance from a to b, can be bounded, independently of a, b, and the curve C? 

This problem has recently arisen in computational geometry, in analysing the 
performance of an on-line navigation strategy for a mobile robot; see [3]. 

There is an interesting connection between self-approaching curves and curves 
with increasing chords that are defined by the property 

d(a,d) 2:: d(b,c) 

for any four consecutive curve points a, b, c, d. Namely, a curve has increasing 
chords iff it is self-approaching in both directions. In [2] the problem analogous to 
ours has been posed for curves with increasing chords. A solution has been provided 
by Rote in [4]. He cuts a curve with increasing chords into small pieces, so�ts them 
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by slope and shows that the reassembled curve has again increasing chords. As it is 
also convex, by construction, its length can easily be bounded. This way, Rote shows 
that 271" /3 � 2.094 is the sharp upper bound for the detour of planar curves with 
increasing chords. 

Unfortunately, Rote's method cannot be applied to self-approaching curves, be
cause this weaker property is, in general, not preserved if segments are sorted by 
slope; see Figure 1 for an example. 

self-approaching not self-approaching 

Figure 1: If the segments of a self-approaching polygonal line are sorted by slope, the 
result need not remain self-approaching. 

In fact, establishing a sharp upper bound for the detour of self-approaching curves 
seems to be more complicated. 

In this paper, we proceed as follows. First, in Theorem 4 we prove that the length 
of a self-approaching curve cannot exceed the perimeter of its convex hull. Next, we 
circumscribe a self-approaching curve by a simple, closed convex curve whose· length 
can be easily computed. This yields an upper bound for the perimeter of the convex 
hull; see Theorem 5. Finally in Theorem 6, we demonstrate that the resulting bound 
of 5.3331 ... is in fact the sharp upper bound for the detour of self-approaching curves. 

2 Definitions and properties 

The curves considered here are assumed to be piecewise smooth curves in the plane. 
For a curve C and a point a inside a smooth piece of C, the tangent to C at a and 
the normal to C at a, which is perpendicular to the tangent, are uniquely determined. 
Let a be a point of C such that two smooth pieces of C meet at a. The two normals 
N1 and N2 to the corresponding smooth pieces at a define a set of lines, each line of 
this set is regarded as a normal to C at a; see Figure 2. 

Figure 2: The bundle of lines defined as normals to C at a. 

Let d( a, b) denote the Euclidean distance between two points a and b. For two 
points a =Sb (a < b) on a directed curve C, c?.a (c>a) denotes the part of C from a to 
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the end (without a ), C[a, b] means the part of C between a and b, and length( C[a, b]) 
means its arc length. 

Definition 1 An oriented curve is called self-approaching if the inequality 

d(a, c) � d(b, c) 

is fulfilled for any three consecutive points a, b, c on the curve. 
Let C be an oriented curve from a to b. Then the quantity 

length( C[a, b]) 
d(a, b) 

is called the detour of a curve from a to b. The detour of a curve from a to b is the 
reciprocal of the minimum growth rate used in [4]. 

First, we give two equivalent definitions for self-approaching curves. The following 
lemma shows that the self-approaching property is equivalent to the fact that for any 
point a on the curve the rest of the curve lies fully on one side of any normal to C 

at a . We call this the normal property. 

Lemma 2 An oriented curve C is self-approaching iff any normal to C at any point 
a does not cross c>a . 

Proof. The normal property means that in point a we move closer or maintain the 
distance to every point' in c>a. This property holds continuously, so for any three 
consecutive points the self-approaching property holds. 

If the normal property is not fulfilled then there exists a point a such that a 
normal to C at a crosses c>a in d. Then in a we move away from some points 
in c>c'. So there are points b E c>a and C E c>c' for which the self-approaching 
property is not true. D 

Now we give another equivalent definition of the self-approaching property which 
we call the right angle property. 

Lemma 3 An oriented curve C is self-approaching iff for any point a on C there 
is a right angle at point a which contains c?.a . 

Proof. Let a be a point on a self-approaching curve C and consider the two tangents 
T1 and T2 from a to c?.a such that c?.a lies between T1 and T2 which span an angle 
cp. If one of T1 and T2 is a tangent to C at a then cp $ 90° follows from the normal 
property (Lemma 2), see Figure 3 (i). Otherwise there are two points b, c E c>a with 
b E T1 and c E T2 , see Figure 3 (ii)

'. 
Let us assume that b appers before c on C. Then 

from Definition 1 we have d(a, c) � d(b, c), in other words b c  is not the largest edge 
of the triangle abc, which means that cp $ 90° . 

If a curve C is not self-approaching, then due to Lemma 2 the normal pr:operty is 
not fulfilled, i. e. there is a point a such that a normal to C at a crosses c>a in d. 

Then in a we move away from some points in c>c!. So there are points b E c>a and 
c E c>c' for which the right angle property is not true. D 
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c>a 

(i) 

Figure 3: For any point a on C, the rest of the curve is included in a right angle 
at a. 

Example. The logarithrnic spiral, directed to the center, is an interesting example 
for a self-approaching curve. In polar coordinates it is the set of all points (cp, ecpcota ) 

with constant angle a < 90° between the tangent and the radius to each point on the 
curve, see Figure 4. lt is self-approaching if a fulfills 

a :=::; arctan 
(2��lrrJ � 74.66° 

in which W denotes Lambert's W function [l] defined by the functional equation 
W(x) eW(x) 

= x. Figure 4 shows the limiting case where the normal at any point is 
tangent to the rest of the curve. 

Figure 4: The narrowest self-approaching logarithmic spiral. 
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This special curve is in a sense the narrowest self-approaching logarithmic spiral. 
One can show that its detour equals 1/ cos amax � 3. 78, but despite its optimized 
form there are other self-approaching curves with a bigger detour. For example, the 
simple curve shown in Figure 5 has a detour of 1r + 1. 

�-------b a 

Figure 5: A simple self-approaching curve with a detour of 1r + 1. 

However, there is something interesting about the logarithmic spiral. Let us sup
pose that we fix a string at point b of Figure 4 and attach a pencil at point a. Now we 
move the pencil clockwise holding the string taut. Then the pencil draws the spiral 
while the string wraps around the inner part of the spiral. (Therefore this curve is 
its own involute.) This implies that the string is of the same length as the inner part 
of the spiral. Consequently, the total length of the spiral equals the perimeter of its 
convex hull! This fact will now be generalized to arbitrary self-approaching curves. 

3 Analysing �he detour of self-approaching curves 

First we show that the length of self-approaching curves are bounded by the perimeter 
of their convex hull. Then we estimate the perimeter of their convex hull and prove, 
by giving an example, that the bound is tight. 

Let ch(C) denote the convex hull of a curve C and per(C) the length of the 
perimeter of ch(C). For two points a and b let R(a, b) denote the ray starting at a 
and passing through b. 

Theorem 4 The length of a self-approaching curve C is less than or equal to the 
perimeter, per( C), of its convex hull. 

Proof. The length of a curve C is, by definition, the supremum of the lengths of all 
polygonal chains with vertices Oll C in the same order as they appear Oll C. Therefore, 
an upper bound for the length of all such chains is also an upper bound for the length 
of C. 

We take an arbitrary polygonal chain Q whose vertices lie on C in the same order. 
By induction on the number of vertices of Q, we will prove that Q is shorter than 
the perimeter, per(Q), of its convex hull, ch(Q), which in turn is bounded by per(C). 
Note that the vertices of ch(Q) are also vertices of Q and are therefore points on C. 

The assertion is true for Q being a line segment, so let us assume that Q has at 
least three vertices, the first two are called a and b. The induction hypothesis is that 
length( Q?.b) � per( Q?.b). 

We distinguish two cases depending on whether b lies on the boundary of eh( Q) 
or not. 
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Figure 6: d(c, a) + d(g, a) � d(g, f) + d(f, e) + d(e, c) + d(a, b). 

Case 1. The point bis on the boundary of eh(Q). We have a situation as depicted 
in Figure 6. When passing from eh( Q?.b) to eh( Q), the eonvex hull ehanges as follows. 
The segments g f, f e and e c which belang to eh( Q?.b) are replaeed bv the segments 
ca and ga. Sinee length(Q?.b) + d(a, b) = length(Q) it suffiees to prove that 

d(c, a) + d(g, a) � d(g, f) + d(f, e) + d(e, c) + d(a, b). 

We do not know whieh way C takes from a to b but there are either points f' E 
R(g, f), e' E R(f, e) and c' E R(e, c) in exaetly this order on C[a, b] or there are 
points c' E R(c, e), e' E R(e, f) and f' E R(f, g) in this order on C[a, b]. W.l.o.g. we 
assume the first ease. 

While the eurve C moves from a to f' it gets closer to f beeause f' arises before 
f on C. Therefore 

d(g, a) � d(g, J') = d(g, f) + d(f, J') 

By the same argument C gets closer to f while it runs from f' to e'. Therefore 

d(f, J') � d(f, e') = d(J, e) + d( e, e') 

Similarly we have d(e, e') � d(e, c) + d(c, c') and also d(c, c') � d(c, b). Altogether we 
conclude 

d(c, a) + d(g, a) � d(g, f) + d(f, e) + d(e, c) + d(c, b) + d(c, a). 

The triangle inequality d(c, b) + d(c, a) � d(a, b) finishes the proof. This also works 
for c = b or g = b. 

Notice that this generalizes to any number of vertiees of eh( Q?.b), instead of e„ f 

and c. 

Case 2. The point bis not on the boundary of ch(Q). Then a must lie in the wedge 
included between the prolongations of the adjaeent edges of eh( Q?.b) at b, see Figure 7. 
The neighbouring vertices of bin eh( Q?.b) are ealled c and e. The angle cp between bc 

and be is less than or equal to 90° beeause of the right angle property(Lemma 3). 
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Figure 7: d(c,p) + d(e,p) 2 d(b,p) + d(b, c) + d(b, e) 

We assume a situation as in Figure 7 where the points b and e of eh( Q?.b) are not 
on the boundary of ch(Q). Let p be the intersection point of ab and R(e, f). Using 
the induction hypothesis and the fact <p :s; 90° we first show that length( Q?.P) is not 
greater than per(Q?.P). Passing from ch(Q?.b) to ch(Q?.P), the convex hull changes 
as follows. The segmeri:ts b c and b e which belong to ch(Q?.b) are replaced by the 
segments p c  and p e  of ch(Q?.P). Since length(Q?.P) is equal to length(Q?.b) + d(b,p) 
it is sufficient to show that 

d(c,p) + d(e,p) 2 d(b,p) + d(b, c) + d(b, e) 

holds, this is exactly the conclusion of Lemma 7 in the appendix on page 12; the proof 
is elementary but lengthy. 

Since we can use the assumption that length( Q?.P) :s; per( Q?.P) and the fact 
'1/; :s; <p :s; 90° the same argument holds also for Q?.a = Q and also for the case that 
more vertices of ch(Q?.b) than only band e do not reappear as vertices in ch(Q). This 
concludes the proof. D 

In the following, for two points p and q let circ
p
(q) denote the circle with center p 

passing through q. 

As an immediate consequence of Theorem 4, we have an upper bound of 21r for 
the detour of self-approaching curves, because any such curve from point a to point b 
must be contained in eire b ( a). The following theorem refines this argument to a 
smaller bound, which will be shown to be tight afterwards in Theorem 6. 

Theorem 5 

greater than 
The perimeter of the convex hull of a self-approaching curve is not 

2ß+1r +2 
Cmax := m� 

J 
� 5.3331 ... 

ße[o .. 2] 5-4 cosß 

times the distance of its endpoints. 
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Proof. Let a, f denote the first resp. final point of a self-approaching curve C. The 
proof works as follows: We show that per( C) :S Cmaxd( a, f) holds if the eurve does not 

eross the line segrnent a f. If it does, we apply this bound for each subcurve between 
two successive curve points on a J and add up the length. Due to the self-approaching 
property, the curve points on af appear in. the same order as on C. Then we know 
that the sum of the perimeters of all such subeurves is less than Cmax times the distanee 
between a and f. Now eonsider two subsequent subcurves C1 and C2 . The two eonvex 
sets per( Ci) and per( C2) interseets at least in one point. and therefore we eonclude 
per(C1 U C2) :S per(C1 ) + per(C2 ). This argument can be applied sueeessively, so 
the perimeter of the whole eurve is smaller than the sum of the perimeters of all the 
subeurves whieh in turn is smaller than Cmax times the distanee between a and f. 

So for the rest of this seetion we may assume that C does not eross the line segment 
af. Beeause of the right angle property(Lemma 3), the whole of C lies between two 
orthogonal halflines X and Y starting at a. W.l.o.g. we assume that the initial part 
of C lies on the left side of the edge directed from a to f, and, if necessary, we rotate 
X and Y such that the halfline on the other (right) side of af touehes C at a point e, 

see Figure 8. Let h and w be the height resp. width of the bounding box of a and f 
aceording to rectangle with sides parallel to X and Y and with diagonal a J. 

X 
w 

.. ··· e 

f 

···.... . ....... ········ ·· ...... ......... . 

;a 

h 

y 

Figure 8: Any self-approaching curve is contained in a wedge of 90° . 

We will eonstruet a convex area, A, that eontains C and we will show that the 
perimeter of this area divided by d(a, J) = v'h2 + w2 is bounded by Cmax. 

This construction goes as follows, refer to Figure 9. First we know that C is 
eontained in the right angle at a, and C[a, e] is contained in eirc e(a) and C[e, f] is 
eontained in eire 1(e), due to the self-approaching property. 

We also know that C(a, e] must avoid eire 1(e), but pass around it to reach e 
because it must not eross af. We conclude that eire J(e) is contained in circ e(a) .. 

Now, we will enlarge these eircles to a certain extent. Instead of e, we use a 
point e' on X with d(a, e') 2:: d(a, e), such that circ e,(a) still contains eire 1(e') and 
touches it in one point c'. This is possible because for every position of e' on X with 
d(a, e') 2:: d(a, e), the whole circle cire e,(a) is always on one side of Y, while eire 1(e') 
must eventually cross Y. Note that d(e', a) = d(e', c') = d(c', J) + d(J, e') = 2d(J, e') 
holds, in other words the radius of eire e' ( a) equals the diameter of eire 1 ( e'). 
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Now let c be the point at which curve C crosses f c! first. We know that C<!:c is 
contained in eire e ( a) � eire e' ( a), C?.c is contained in eire f ( c) � eire 1 ( c') = eire f ( e'). 
So the curve C is included in the convex area A limited by e' a, the eircular arc from 
a to c' about e', and the halfeircle from c' to e' about f, see Figure 9. 

///�::,(a) 
·····--... ___ _ 

_-.-_c ___ irc t( e') '········ ..... \ 

X 

y 

Figure 9: Curve Cis contained in the shaded area A. 

We choose a scale such that d(f, d) = 1. Let ß be the angle between e' a and 
e'c!, see Figure 10. Then d(e',c') = 2 = d(e',a), w = 2 - cosß and h = sinß. The 
length of the circular arc from a to c' equals 2ß while the halfcircle from d to e' has 
length 1r. 

Figure 10: Measuring the perimeter of the convex area A. 

Then the perimeter of the constructed convex area A divided by d ( a, J) = v' h 2 + w2 

is given by the following function g in ß. 
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g(ß) := 2ß + 1r + 2 
= 2ß + 1r + 2 

Jsin2 ß + (2 - cosß)2 J5 - 4cosß 

The maximum value, Cmax , of g(ß) equals aproximately 5.3331 ... for O :S ß :S 1r /2 
and is attained at ß

op
t;::::; 11.2 2 ° with (2ß

opt + 1r + 2) sinß
opt = 5 - 4cosß

opt · D 
Surprisingly, it turns out that there cannot be a smaller upper bound for self

approaching curves. 

Theorem 6 The constant Cmax is a tight upper bound for the detour of self-approaching 

curves. 

Proof. That Cmax is an upper bound for the detour of self-approaching curves follows 
directly from Theorem 4 and Theorem 5. To prove tightness we construct a curve 
with a convex hull similar to the bounding area A in Theorem 5. 

As a first step we consider the curve in Figure 11. From the start point, a, to 
the end, f, it consists of a circular arc of radius 2 and angle ß, a half circle of radius 
1, and a line segment of length 1. This curve is self-approaching, its length equals 
2ß + 1r + 1 while d( a, J) = J5 - 4 cos ß. The ratio takes on a ma.ximum value of 
approximately 4.38. 

Figure 11: This self-approaching curve has a detour of 4.38. 

But there is some room for improvements in the last step, i. e. the line segment 
from e to f. Instead of walking straight from e to f we use a sequence of pieces of 
small cycloids. (A cycloid is known to be the orbit of a point on the boundary of a 
rolling circle and it has another cycloid as its involute.) For an odd number n E N 
we can fill a rectangle of height h and width w = 2nh/1r with n successive congruent 
pieces of cycloids such that they form a curve from the lower left to the upper right 
corner, see Figure 12 . Each piece is a cycloid generated by a circle of radius h/1r 
rolling on a vertical line, and each one is the involute of its successor. The result.ing 
curve is self-approaching, and its length is exactly 2w since the length of a piece is 
twice its width. 

N ow let us replace the line segment in our first step by such a construction in a 
rectangle of height h = (2n/�)+l and width w = 1- h = 2nh/1r, see Figure 13. 
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Figure 12: How to fill a rectangle of width w and height h with a self-approaching 
curve of length 2w using pieces of cycloids. 

a 

Figure 13: Replacing the line segment by a rectangle that gives room for improvement. 

The curve consists of 

• a circular arc about e' of length 2ß 

• a quartercircle with radius 1r /2 about f 

• a quartercircle with radius (1 - h)1r/2 about f' and 

• a sequence of cycloids from e to f of overall length 2(1 - h). 

Now we choose the constant ß = ß
ap

t from Theorem 5 and for n = 1, 3, 5 ... we have 
a sequence of self-approaching curves with a detour of at least 

2ßop
t + 1r/2 + (1- h)(1r/2 + 2) 

J5 - 4cos ß
ap

t 

which converges to Cmax for n - oo (i. e. h - 0). D 

Actually, as n tends to infinity, one could think of the curve of Figure 12 as a thick 
line segment of length 2, while its endpoints are only distance 1 apart. One might 
wonder if a factor bigger than 2 can be achieved by a different technique. Note that 
this is not possible as a direct consequence of Theorem 5. Also note that there are 
many other ways of constructing the self-approaching thick line segment of length 2. 
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A Appendix 

Lemma 7 Let v be a point inside a triangle abc. We connect each vertex to v using 
segments l1 = bv, r1 = cv, and z = av. Let l2 = a b  and r2 = a c  be two ·edges of the 
triangle; see Figure 14. If the angle <p ::; 1r between l1 and r1 is less than or equal to 
1r /2 then for the lengths of the segments l1 '+ r1 + z ::; h + r2 holds. 

a 

b C 

Figure 14: l1 + r1 + z ::; l2 + r2 holds for <p ::; 1r /2. 

Proof. The assumption is obviously true for z = 0. Let z # 0. We have to prove the 
inequality l2 - l1 + r2 - r1 2: z. Let ,\1 ::; 1r be the angle between l2 and z, ,\2 � 1r be 
the angle between li and z, p1 ::; 1r be the angle between r2 and z and p2 ::; 7r be the 
angle between r1 and z. Using the law of sines we substitute l1 with zsin(���>.2) and l2 

with z sin(�� �\). We transform r1 and r2 analogously and divide the whole expression 
by z. So we have to show that 

sin .-\2 - sin .-\1 sin P2 - sin Pi 
sin(.-\1 + .-\2) + sin(p1 + p2) 

2: 1 

is true. We consider some simple transformations: 

sin ,\2 - sin ,\ 1 

sin(.-\1 + .-\2) 
sin .-\2 - sin( (.-\1 + .-\2) -.-\2) 

sin( .-\1 + .-\2) 

sin.-\2 - sin(.-\1 + .\2) cos A2 + cos(,\1 + .-\2) sin .\2 
sin(.-\1 + .\2) 

, (1 + cos(.-\1 + .-\2)) sin ,\2 , - - COS A2 + 
. ( \ \ ) 

2: - COS A2 sm AI+ A2 
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Note that (*) > 0 holds because of O < ,\1 + ,\2 < 'IT. Similarly we have si��2-sinl1 > 
- - - sm Pl +p2 -- cos P2 so it is sufficient to show that - cos ,\2 - cos p2 2 1 is true. We conc ude 

,\
2;e2 

= 1T - 3 from ,\2 + p2 + r.p = 21r. Since ,\2 and p2 are inner angles of a 
triangle we know ,\2, p2 ::; 7r and from r.p ::; 1r /2 we conclude ,\2 , p2 2 1r /2. Therefore 
l-\2 - P2I ::; 7r /2 is true. Now 

(
,\2 + P2

) (
l-\2 - P2i

) - cos ,\2 - cos p2 = -2 cos 2 cos 2 2 1 

holds since - cos ("2;e2
) = cos (3) 2 cos (i) = J2 and cos (l,\2

;
P2 1) > J2 are 

fulfilled. D 
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