
deposit_hagen
Publikationsserver der
Universitätsbibliothek

Operator-Based Query Progress Estimation

Mathematik
und
Informatik

Informatik-Berichte
343 – 02/2008

Ralf Hartmut Güting

INFORMATIK
BERICHTE

343 - 2/2008

Operator-Based Query Progress Estimation

Ralf Hartmut Güting

 Fakultät für Mathematik und Informatik
 Postfach 940
 D-58084 Hagen

Operator-Based Query Progress Estimation

Ralf Hartmut Güting
LG Datenbanksysteme für neue Anwendungen

 Fakultät für Mathematik und Informatik, Fernuniversität Hagen
D-58084 Hagen, Germany, rhg@fernuni-hagen.de

Abstract: Recently, research has addressed the problem of estimating progress for long-running data-
base queries. The basic idea is to “continuously” monitor execution to keep track of how much work has
been done, and at the same time to collect statistics to arrive at a more and more refined estimate of the
total amount of work that is needed. Previous research has generally decomposed the operator tree for
the query into pipelines (or “segments”) of non-blocking operators, tried to observe progress per pipeline
and then to combine progress measures of the different pipelines into an overall progress measure. It has
soon become apparent that pipelines of non-blocking operators are too large units and that it is necessary
to define smaller segments (e.g. containing only one join operator).

In this paper we take a more radical approach where each operator in a query tree is able to estimate the
progress achieved for its subtree based on the progress reported by its children. No global analysis of the
query tree is needed, nor is it necessary to determine driver nodes or dominant inputs. Each operator is
strictly independent in its progress estimation. Nevertheless progress estimation works fine across block-
ing operators and for the whole query tree. The technique lends itself to a simple and clean implementa-
tion. It is suitable for extensible database architectures where the set of query processing operators is
large and possibly extended at any time. Our implementation allows one to add progress support for
operators gradually such that the system runs at any time and reports progress whenever all operators in
the query tree support progress. We report a prototypical implementation in the SECONDO extensible
database system. Progress estimation now is a standard feature of SECONDO. To our knowledge it is the
first freely available DBMS prototype that includes query progress estimation.

1 Introduction

For many kinds of long-running software tasks, human computer user interfaces include a visualization
of the progress made, usually in the form of a progress bar with an estimate of the remaining time.
Some examples of such tasks are file download, burning a CD-ROM, or installing an operating system.
For a long-running database query such a progress indication would also be quite useful. The user can
plan her time better, e.g. go for lunch instead of waiting for the completion of the query. If unexpectedly
slow progress is shown, this can be a hint that the query was wrongly formulated. Based on this one
may cancel the query execution. For a long running task it is also comforting to see that progress is
being made, albeit slowly, and that the system is not stuck.

Perhaps surprisingly, progress indicators for database queries are not yet in common use. The most
likely reason is that the problem is difficult. Progress is the fraction of work performed relative to the
total amount of work to be done. Whereas it is easy to observe (or count) the work that has been done,
the estimation of the total amount of work is a difficult problem as is well known from query optimiz-
ers. Simple solutions, such as estimating the remaining time as the difference between the optimization

– 2 –
total time estimate and the elapsed time, do not work, as the optimization time estimate is not precise
enough and can be quite wrong.

Recent research [2, 3, 6, 7, 8] has addressed the problem of progress estimation for long-running que-
ries. The general idea is to observe execution at regular time intervals, counting the work that has been
done (e.g. the number of tuples processed by operators) and collecting statistics that allow one to con-
tinuously improve the estimate for the total (or remaining) work needed. A main problem in query opti-
mization is the prediction of the cardinality of intermediate results, produced by operators
implementing selection or join, but also others such as groupby, for example. During execution one
may observe the selectivity of a selection or join as the fraction of tuples returned relative to those pro-
cessed. Hence cardinality estimation and the estimate of total work can be continuously improved.

Characteristic for all the research mentioned above are the following apects: First, an operator tree rep-
resenting a query plan is decomposed into pipelines of non-blocking operators. Pipelines are interesting
because they have one of three states, namely (a) completed, (b) currently executing, and (c) not yet
running, and all operators in a pipeline share this state. Progress is determined per pipeline and then
summed up to determine the overall progress. Second, operators in a pipeline work synchronously so
that one can observe progress of a pipeline possibly at a single point in the pipeline. So these works try
to identify so-called “driver nodes” or “dominant inputs” as observation points. Third, the cost measure
for processing in a pipeline is kept simple. One approach uses the total numbers of tuples returned by
operators, the other pages of bytes read or output at pipeline boundaries.

Whereas these approaches achieve satisfactory results in many cases, there are also some problems:

1. It turns out that in some cases, pipelines are too coarse units. So [7] observe that in order to make
accurate predictions it is necessary to split pipelines (called segments there) into smaller parts
ensuring that a segment contains only one join operator (or other set operator). However this
blurs the initial idea of pipelines and makes concepts more and more complicated.

2. The simple cost measure makes it impossible to balance costs adequately between different pipe-
lines, especially currently executing and not yet started ones.

To illustrate this, suppose there are two pipelines P1 and P2 separated by a blocking operator. Assume
that the per tuple cost in P2 is 1 and that in this case both pipelines require the same amount of time T
for processing. Hence when P1 completes, overall progress is 50%. Let us assume the progress estima-
tor reports this correctly.

However, now assume the per tuple cost in P2 is 10, for example, because an expensive predicate is
evaluated for each tuple. Hence the total time for P2 is 10T. It does not help that in P1 the number of
tuples to be processed in P2 is estimated precisely. As in the first case, assuming a uniform tuple cost of
1, progress at completion of the first pipeline will be estimated as 50% whereas the real progress is less
than 10%.

In this paper, we present a different approach that addresses the problems above. Our approach was
motivated by the goal of supporting progress estimation in an extensible database prototype, SECONDO.
The SECONDO system is a nice environment for studying and implementing progress estimation tech-
niques as it is an open source system that is freely available for download [11] and central components
like the optimizer and the query processor are accessible and relatively well documented. Further docu-
mentation about SECONDO can be found at [11].

SECONDO has a modular architecture and supports complex non-standard data types and operations
(e.g. for moving objects). This leads to the following special requirements.

– 3 –
• Query processing is organized as a set of algebra modules each providing certain operations. It
should be possible to add new query processing operators without any need to update global
modules for progress estimation.

• The system allows one to enter query plans directly and a lot of experimentation is done in this
mode, i.e., without using the optimizer. Hence progress estimation should work as well as possi-
ble in this case (even though cost estimation for not yet running operators cannot be precise with-
out help of the optimizer).

• Progress estimation must support expensive predicates.

As a result, our approach has the following novel features:

• Progress estimation is based on the idea that each operator estimates the total time required for
processing its subtree (the one of which it is the root) and the progress achieved for this subtree,
based on similar estimates by its children. We will show that this works across blocking opera-
tors, so no definition of pipelines or global analysis of the query tree is needed. Each operator is
strictly independent in its progress estimation and can perform it locally. Progress of the query is
the progress reported by the root operator.

• Cost estimation for each operator can be done as precisely as desired. For example, per tuple and
per byte costs can be distinguished. In particular, optimizer information about expensive predi-
cates can be utilized. This means that cost can be balanced correctly between active and passive
operators.

• Progress estimation works, although not perfectly, for query plans that do not come from the
optimizer.

• For the first time, to our knowledge, progress estimation is studied for operators that cut off a
stream of tuples from the end (e.g. applying a first n clause after a big SQL query). This is
achieved by explicitly modeling blocking time and blocking progress for operators.

• We provide an analysis of the reliability of on-line selectivity estimates of filter and join opera-
tors.

• The overhead is extremely low.
• To our knowledge SECONDO is the first freely available DBMS prototype that includes query

progress estimation.

The paper is structured as follows. Section 2 explains the concepts and illustrates operator based
progress estimation, providing precise progress formulas for a small set of basic operators. The imple-
mentation in SECONDO is outlined in Section 3. Strategies for progress estimation for a larger set of
operators are discussed in Section 4. Experimental results are shown in Section 5. Several important
open questions are discussed in Section 6. Related work is described in Section 7. Finally, Section 8
concludes the paper.

2 Operator-Based Progress Estimation

2.1 Overview

Answering Progress Queries. The basic idea of operator based progress estimation is that each opera-
tor in an operator tree representing a query plan is able to estimate the total time needed for processing
its subtree (e.g. in milliseconds) and the relative progress already achieved for this subtree (a number
between 0 and 1). To determine these numbers, an operator can ask each of its predecessors (children in

– 4 –
the operator tree producing its argument streams) for the following quantities1 expected for their
respective subtree:

• cardinality: the total number of tuples
• size: the average tuple size
• time: the total time for processing the subtree
• progress: the relative progress achieved in processing the subtree

Furthermore, the operator maintains counters to keep track of the relevant numbers of steps in its own
implementation to determine its own relative progress; in most cases this will be the numbers of tuples
read from the input streams and returned on the output stream. Based on this information, the operator
then on request returns the same quantities to its successor (parent in the operator tree).

Asking a predecessor for progress information we call sending a progress query, and returning such
information answering a progress query.

Cold and Warm States. Estimation of result cardinalities and tuples sizes for some operators depend
on observed tuple flow through this operator. For example, a filter operator evaluates a predicate on
each tuple in a stream and observes its selectivity as the fraction of tuples returned. The same holds for
join operators that observe the number of tuples returned relative to the number of pairs considered.

A similar problem occurs for operators computing new attributes whose values can be of varying size.
For example, think of an operator that computes polygons as intersections of two polygons. The aver-
age size of the new attribute and hence, the average tuple size, can only be observed when tuples flow
through the operator.

However, when there are blocking operators in a query plan (e.g. sort), then for considerable periods of
time no tuples flow through the operators higher up in the operator tree. We say, an operator is in cold
state, if no tuples are flowing through it yet (or too few to make a good prediction), and in warm state,
when it has processed a sufficient number of tuples.

Such operators will then use different estimation strategies for the warm and the cold state. In the warm
state, estimation is based on observations. In the cold state, prediction is based on either defaults, or, if
available, on selectivity information passed from the optimizer. To this end, we make such information
available in query plans.

Interaction With the Query Processor. The query processor at regular time intervals, say, every 0.1
seconds, sends a progress query to the root of the operator tree. This operator will recursively send
progress queries to its predecessor(s) and on receipt of the answer(s) produce progress information and
return it to the query processor. The expected time and the relative progress can then be passed to a user
interface for display.

Communication between operators is done via the query processor. An operator implementation can
call a method RequestProgress of the query processor to get the progress information of its first argu-
ment, for example. The query processor then calls a method RequestProgress of the respective operator.
An operator is provided an address of a ProgressInfo record by the query processor which has fields for
the mentioned quantities; by setting these fields it can return the values.

From the point of view of the query processor, evaluation of progress queries is quite similar to the reg-
ular evaluation of queries; just for each operator instead of the standard evaluation method a Request-

1. The set of quantities will be refined later.

– 5 –
Progress method is called. In SECONDO, this change is particularly easy, since even the standard
evaluation procedure can be used, just passing a different message to operator implementations.

Decision to Support Progress for Each Operator. We allow for each operator an independent deci-
sion to support progress or not. In this way, in a large existing system that already has lots of query plan
operators, progress estimation can be added gradually. The system will work at all times. To this end, an
operator can individually register to support progress queries. The query processor, when asked by an
operator to evaluate progress for one of its arguments, checks whether that operator supports progress.
It returns false if the operator does not support progress and true if it does.

Accordingly, an operator implementing progress estimation must always expect that an argument does
not yield progress information. In this case, most likely it cannot produce a progress estimation itself. It
then returns a Cancel message to the query processor. It returns Yield, if it is able to compute progress
information. The query processor converts such messages into a boolean that it returns to the caller.

The query processor will trigger display of progress at the user interface when it receives the first
progress information from the root operator. Hence, if an operator tree contains operators that do not
support progress, the progress display will simply not appear.

Decision to Answer for Each Progress Query. Since progress queries are posed by the query proces-
sor in an asynchronous manner, a working operator must expect progress queries at any arbitrary time.
Usually operators work in stream mode, that is, they are called according to a protocol2

Open Request* Close

Operators supporting progress must now be prepared to handle progress queries at any time, even
before the Open or after the Close message. This may be a problem, since on Open the data structures
are initialized that are needed to answer progress queries. Therefore, operators are always allowed to
return Cancel when they are not yet capable to answer progress queries. This does not mean that
progress estimation does not work for this query; it simply means that at this instant of time it is not
available. The query processor will ask again later.

2.2 Progress Estimation for Some Basic Operators

In this subsection, we illustrate progress estimation for a few basic operators. A larger set of operators
is discussed in Section 4. The operators considered here are the following:

feed: rel(Tuple) -> stream(Tuple)
filter: stream(Tuple) x (Tuple -> bool) -> stream(Tuple)
consume: stream(Tuple) -> rel(Tuple)
count: stream(Tuple) -> int
product: stream(Tuple1) x stream(Tuple2) -> stream(Tuple3)
symmjoin: stream(Tuple1) x stream(Tuple2)

x (Tuple1 x Tuple2 -> bool) -> stream(Tuple3)

In the next subsection we discuss

head: stream(Tuple) x int -> stream(Tuple)

The meaning of most operators should be well-known; it will also be explained as we go through them.
The progress information passed between operators is now refined. We pass a structure containing the
following information:

2. Request is called GetNext() in standard terminology.

– 6 –
• C - Cardinality: Expected total number of tuples returned from this subtree
• S - Size: Expected average tuple size [bytes]
• SN - Size: Number of attributes
• SV - Size: For each attribute, the expected average size [bytes]
• T - Time. Expected total time for processing this subtree [ms]
• P - Progress. Fraction of expected time for work already done in this subtree relative to expected

total time [0, 1]

In addition to what was mentioned before we also need the number of attributes and the average size
per attribute. They are necessary to determine the new tuple size after a projection.

For the counters inserted into the code of an operator we use the following notations:

• m - the number of tuples returned (passed to the successor)
• k - the number of tuples read (if there is only one argument stream)
• k1, k2 - the numbers of tuples read from the first and second argument stream, respectively.

We refer to progress information passed by one of the argument operators by indices, e.g. C1 and C2 are
the cardinalities returned by progress estimation of the first and second argument, respectively. The size
related quantities together (S, SN, SV) we denote as Sizes, e.g. Sizes1 and all quantities together as
Progress, e.g. Progress2. This is useful, as for some operators one can copy the size information or even
all fields. Similarly, given size information from two arguments, a function JoinSizes(Sizes1, Sizes2)
computes result sizes for any kind of join operator in the obvious way.

An operator implementation can get a selectivity value and a predicate cost value from its node in the
operator tree, via a request to the query processor denoted as qp.Sel and qp.PredCost respectively.
These values are set to 0.1 (for selectivity) and 0.1 milliseconds (for predicate cost) by default (see
Section 6.2 for a discussion of these constants). If the query plan was constructed by the optimizer, it
was annotated with the values determined in optimization, and this annotation has been entered into the
operator tree (see Section 3).

Operator feed. The feed operator scans a relation and produces a tuple stream. Usually the relation is
stored on disk. In this case, progress information is computed as shown in Figure 1. Cardinalities and

tuple and attribute sizes are read from the relation R.3 We add one to the cardinality to make sure it is
not zero.4 The total time required by the feed operator is based on the cardinality and the tuple size (as
tuples are read from disk), using constants ufeed and vfeed to denote time overhead per tuple and time per
byte. These constants are determined in experiments. The progress is the time estimated for processing
the m tuples that have been returned already divided by the total time, which in this case simplifies to
the obvious progress measure m / Cfeed.

Cfeed = R.Card + 1
Sfeed = R.Size
SNfeed = R.NoAttrs
SVfeed = R.Size[i], for i = 1, ..., SNfeed
Tfeed = Cfeed ⋅ (ufeed + Sfeed ⋅ vfeed)
Pfeed = m ⋅ (ufeed + Sfeed ⋅ vfeed) / Tfeed = m / Cfeed

Figure 1: Progress estimation for feed, stored relation

3. Such information may be obtained from the system catalog; in SECONDO one can ask the relation object for
it.

4. Zero cardinalities must be avoided as they may lead to expected time T = 0. Computation of progress P
divides by T. Adding 1 is a simple solution that introduces only negligible errors.

– 7 –
However, it is also possible that the argument relation is built on the fly, e.g. by a consume operator.5

This case is shown in Figure 2. Here cardinalities and sizes are received from the consume operator dur-

ing or after building the relation. The total time required is the sum of that of the consume subtree and
the time needed by feed itself. Observe that progress grows continuously through the time of complet-
ing the construction of the relation; before this time we have P1 < 1, m = 0 and afterwards P1 = 1, m > 0.
Adding evaluation times for operators and observing progress within each part allows one to nicely bal-
ance between different operator costs.

Operator filter. The filter operator evaluates a predicate on each tuple of a stream and returns the tuples
fulfilling the predicate. Progress estimation is shown in Figure 3 for the cold state.

As long as the operator has not processed a sufficient number of tuples, its own selectivity estimation
may not be reliable, and we prefer to use an estimate from the optimizer instead (if available), or a
default value. We assume that a stable estimation is reached when the operator has returned at least 50
tuples and then switch to the operator’s observed selectivity (Figure 4). See Section 6.2 for a discussion
of constant 50 as a threshold for the warm state.

Operator consume. The consume operator collects a stream of tuples into a relation. Progress estima-
tion is shown in Figure 5.

This is straightforward; u and v are again per tuple and per byte constants.

Operator count. The count operator counts the number of tuples in a stream. Progress estimation is
shown in Figure 6.

5. A ... consume feed ... sequence normally does not make a lot of sense, but it is allowed. In the context of
progress estimation it is interesting to study it as the most simple case of a blocking operator in a query
plan.

Cfeed = C1
Sfeed = S1
SNfeed = SN1
SVfeed = SV1
Tfeed = T1 + Cfeed ⋅ (ufeed + Sfeed ⋅ vfeed)
Pfeed = (P1T1 + m ⋅ (ufeed + Sfeed ⋅ vfeed)) / Tfeed

Figure 2: Progress est. for feed, relation built by consume

Cfilter = C1 ⋅ qp.Sel
Sizesfilter = Sizes1
Tfilter = T1 + C1 ⋅ qp.PredCost ⋅ ufilter
Pfilter = (P1T1 + k ⋅ qp.PredCost ⋅ ufilter) / Tfilter

Figure 3: Progress estimation for filter. Cold state: m < 50

Cfilter = C1 ⋅ m / k

Figure 4: Progress est. for filter. Warm state: m ≥ 50

Cconsume = C1
Sizesconsume = Sizes1
Tconsume = T1 + C1 ⋅ (uconsume + S1 ⋅ vconsume)
Pconsume = (P1T1 + k ⋅ (uconsume + S1 ⋅ vconsume)) / Tconsume

Figure 5: Progress estimation for consume

– 8 –
The processing time for count itself is negligible compared to other operators in a query plan, and the
only one asking count for progress information will be the query processor. Hence we simply copy all
progress information from the predecessor.

Operator product. The product operator computes the Cartesian product of two streams of tuples. It
first reads the second stream entirely into a buffer. It then starts processing the first stream, combining
each tuple with the complete contents of the buffer. Progress estimation is shown in Figure 7.

Cost estimation for this operator shown in this section is a bit simplistic as it does not take tuple sizes
into account. This is valid only if the second stream fits entirely into the memory buffer; costs per byte
would arise if the buffer overflows on disk. Of course, one can make these cost formulas more sophisti-
cated by modeling in which cases disk accesses are needed.

Operator symmjoin. Finally, we discuss symmjoin as a symmetric, non-blocking, nested loop join
operator. It maintains two buffers A and B, one for each input stream. In each step, it reads a tuple a
from the first input stream into buffer A and evaluates the join predicate against all tuples in buffer B
returning successful matches; then it reads a tuple b into buffer B and matches against all tuples in A.
When one stream is exhausted, it reads the remaining tuples from the other stream (without writing to a
buffer), matching against the buffer of the exhausted stream. Progress estimation is shown in Figure 8
and Figure 9.

Similarly as for the filter operator, we rely on the operator’s selectivity estimate only after a sufficient
number of tuples have been returned.

As for product, tuple sizes are not taken into account which only holds if memory buffers do not over-
flow.6

As a general remark, note that somewhat wrong cost estimates are not as disastrous as in query optimi-
zation. In progress estimation, they only lead to a wrong balance of weights between different opera-

Progresscount = Progress1

Figure 6: Progress estimation for count

Cproduct = C1 ⋅ C2
Sizesproduct = JoinSizes(Sizes1, Sizes2)
Tproduct = T1 + T2 + C2 ⋅ uproduct + C1 ⋅ C2 ⋅ vproduct
Pproduct = (P1T1 + P2T2 + k2 ⋅ uproduct + m ⋅ vproduct) / Tproduct

Figure 7: Progress estimation for product

Csymmjoin = C1 ⋅ C2 ⋅ qp.Sel
Sizessymmjoin = JoinSizes(Sizes1, Sizes2)
Tsymmjoin = T1 + T2 + C1 ⋅ C2 ⋅ qp.PredCost ⋅ usymmjoin
Psymmjoin = (P1T1 + P2T2 + k1 ⋅ k2 ⋅ qp.PredCost ⋅ usymmjoin) / Tsymmjoin

Figure 8: Progress est. for symmjoin. Cold state: m < 50

Csymmjoin = C1 ⋅ C2 ⋅ m / (k1 ⋅ k2)

Figure 9: Progress est. for symmjoin. Warm state: m ≥ 50

6. In the SECONDO implementation of join operators, tuples are not copied when forming a result tuple; only
pointers to attributes are copied. Tuple sizes will play a role later if the result stream is written to disk by
consume, but not if result tuples are filtered away or counted, for example.

– 9 –
tors. This in turn will lead to progress being observed at varying speeds, which is not ideal but often
tolerable.

2.3 An Extension: Supporting Cutting Off Streams

The framework described so far supports many query processing operators, in fact, all we can think of,
except one: the head operator. This operator is unique in that it cuts off a stream from the end. Here is
again the signature:

head: stream(Tuple) x int -> stream(Tuple)

The head operator takes a stream of tuples and an integer n and only returns the first n tuples of the
argument stream. The problem is that it obviously needs to know to what extent its argument stream is
produced by blocking operators. Consider the following two example queries:

(1) R feed head[1000] count
(2) R feed sortby[A asc] head[1000] count

Suppose R is a relation with a million tuples and a progress query occurs when head has received 500
tuples. For query (1), the progress information returned by the feed operator will indicate a large total
time T and a small progress value P, namely, 500 / 1000000 = 0.0005. However, head should be able to
estimate that already 50% of the work is done, and that the total time is very small.

In contrast, for query (2), the progress information returned by the sort operator looks quite similar to
that delivered by feed, namely, a large total time T and a very small progress P achieved so far. By the
fact that it has received 500 tuples, head might conclude again that its progress is 50%. This would be
quite wrong, as the long blocking time of the sort operator has passed and the remaining 500 tuples will
be delivered very quickly. Hence the actual progress is more like 99%.

To solve this problem, we add two more fields to the progress information passed between operators,
namely blocking time and blocking progress.

• BT - Blocking Time. The expected time required before this subtree returns the first tuple [ms]
• BP - Blocking Progress. Fraction of expected time for work already done within the blocking

phase relative to expected total blocking time.

For the operators discussed so far, their progress estimations are extended as follows (Figure 10).

Feed on a stored relation does not block; hence the blocking time is 0 and the blocking progress 1. As
mentioned before, zero time estimates must be avoided; hence we use 0.001 instead. The feed operator
on a constructed relation, filter, count, and symmjoin are non-blocking; they all just need to pass the

Operator Blocking Time Blocking Progress

feed (stored rel.) 0.001 1.0

feed (rel. built by consume) BT1 BP1

filter BT1 BP1

consume Tconsume Pconsume

count BT1 BP1

product BT1 + BT2 + C2 ⋅ uproduct (BP1 ⋅ BT1 + BP2 ⋅ BT2 + k2 ⋅ uproduct) / BTproduct

symmjoin BT1 + BT2 (BP1 ⋅ BT1 + BP2 ⋅ BT2) / BTsymmjoin

Figure 10: Blocking time and blocking progress

– 10 –
blocking time and progress values of their predecessors. Consume is totally blocking; hence its time
and progress estimates are also estimates for blocking time and blocking progress. Product is blocking
while reading the second argument stream into the buffer; hence it combines its blocking time and
progress with that of the predecessors.

Operator head. Since now blocking information is available, we can define progress estimation for the
head operator as shown in Figure 11.

Here n denotes the value of the second argument of head. The estimated total time is the blocking time
of the argument stream plus the time needed after the blocking phase. The latter time is for each tuple
returned the per tuple time of the argument stream (after blocking) plus a constant for head itself. Like
other non-blocking operators, head simply passes blocking time and progress from its predecessor.

3 Some Implementation Issues

The framework described above has been implemented in the SECONDO prototype. An outline of the
implementation strategy was given in Section 2.1. In this section we provide some more details on the
implementation done in SECONDO.

Extending the Stream Protocol. The standard protocol for stream processing has the form

Open Request* Close

On Open, initializations are done and required data structures allocated. Then, in a loop Request mes-
sages are sent and stream elements returned (usually tuples) together with a message Yield or Cancel.
On Close, terminating actions are performed and any data structures deallocated.

We have introduced two new messages called RequestProgress and CloseProgress. RequestProgress is
triggered asynchronously by the query processor (see below) and hence can occur at any time, possibly
before the Open or after the Close message. Since Open initializes the data structures that are also
needed for answering RequestProgress messages, in the first case the operator cannot return progress
information and replies Cancel. However, it is necessary that progress queries can be answered after the
Close message. For example, a blocking operator may close its input stream; this does not mean that the
query is completed. Hence we cannot deallocate data structures any more in the Close message (at least
not the parts used for progress queries). Furthermore, observe that streams can be used in a loop (e.g. in
the loopjoin operator explained in Section 4). Therefore, we have extended the stream protocol as fol-
lows:

(Open Request* Close)* CloseProgress

The CloseProgress message is sent only once by the query processor after complete evaluation of the
query. Hence on CloseProgress any (remaining) data structures can and will be deallocated. Because
some data structures are now not deallocated on Close but are allocated on Open, the implementation of

Chead = min(n, C1)
Sizeshead = Sizes1
Thead = BT1 + Chead ⋅ (perTuple + uhead)

where perTuple = (T1 - BT1) / C1
Phead = (BP1BT1 + m ⋅ (perTuple + uhead)) / Thead
BThead = BT1
BPhead = BP1

Figure 11: Progress estimation for head

– 11 –
the Open method is changed such that first a check is performed whether a data structure exists; if so, it
is deallocated. Then a new instance of the data structure is created. In this way any storage leaks are
avoided.

Evaluating Progress Queries. Query processing in SECONDO is done in cooperation between an Eval
method of the query processor and operator implementation functions. Essentially, Eval is applied to a
node of the operator tree and returns the value of that subtree. If the node is a leaf of the tree, it returns
the value directly. If the node represents an operator applied to some arguments, Eval recursively eval-
uates all sons that do not represent stream or function arguments (called evaluable arguments) and puts
the results into an argument vector for the operator. For the stream and function arguments it just puts
the pointers to the subtrees into the argument vector. Then the operator function is called, passing the
argument vector and a message from the set Open, Request, Close. For simple operators that do not
return streams (e.g. integer addition), the message is ignored.

Operator implementation functions can take their evaluable arguments from the argument vector. For
stream and function arguments, they explicitly ask the query processor for evaluation, calling query
processor methods qp.Open, qp.Request, qp.Close and qp.Received. Operators handling different mes-
sages branch into a part of their code for that message.

This scheme is very easily extended by adding the new messages RequestProgress and CloseProgress.
Operators can send these messages to their arguments using new query processor functions qp.Request-
Progress and qp.CloseProgress. Before calling Eval with the respective message for a node, these func-
tions check whether this operator was registered to support progress. Operator implementation
functions just add additional branches in their code to process the two new message types.

Embedding Progress Queries into Evaluation. To avoid more complicated multi-threading schemes,
we have embedded the triggering of progress queries into the Eval function of the query processor. In
processing tuple streams, the Eval function is called at least once for each tuple (possibly several times,
e.g. if predicates are evaluated). The inserted pseudocode looks like this:

progressCtr--;
if progressCtr == 0 then
 if currentTime() - lastTime > progressTimeInterval then
 if RequestProgress(QueryTree, ProgressInfo) then
 ModifyProgressView(ProgressInfo)
 endif;
 lastTime = currentTime()
 endif;
 progressCtr = startValue
endif

In the current implementation, startValue = 100 and progressTimeInterval = 100 (clock ticks ≈ 0.1 sec-
onds). Hence, on each call of Eval, a counter is decremented, and on each 100th call, the system time is
checked. So only very little overhead is added to control the triggering of progress queries.

Making Optimizer Information Available in Query Processing. The optimizer routinely determines
selectivity and predicate cost for each selection or join predicate. This information should be available
to operator functions. To this end, the syntax for query plans was extended by an annotation of the form
{selectivity, cost}. For example, we may write a query plan

Cities feed filter[.Population > 100000] {0.00234, 0.088} consume

In SECONDO, operators are often applied in postfix notation. Here feed is applied to Cities, yielding a
stream of “city” tuples, filter is applied to this stream, and consume collects the stream into a relation.
The {0.00234, 0.088} annotation contains selectivity and cost for the filter operator.

– 12 –
The parser was extended to translate this to a pseudo-operator predinfo. The SECONDO parser generally
translates text syntax to nested list syntax, hence to

(consume (predinfo 0.00234 0.088 (filter (feed Cities) (fun ...))))

The query processor, after annotating the query in nested list syntax with further information, constructs
the operator tree. This was extended to handle the predinfo pseudo-operator in such a way that the
selectivity and predicate cost values are written into corresponding fields of the node for the third argu-
ment (the filter node in this example). The query processor was extended by methods for getting and
setting these fields to be used by operator functions. Finally, the optimizer was extended to include this
annotation for each operator implementing selection or join when constructing the query plan.

4 Progress Estimation for Different Classes of Operators

In this section we discuss progress estimation strategies and implementation techniques for a larger set
of operators, but without giving precise formulas (to keep the space limited). For all signatures shown,
progress estimation has been implemented in the SECONDO prototype. Note that the purpose of the sec-
tion is to illustrate how progress estimation can be realized for various kinds of operators, not necessar-
ily to justify each single aspect of SECONDO query processing or the choice of operators available.

Simple Operators. Some operators either simply let a stream of tuples pass through without changing
tuple size or number, or are a sink for a tuple stream. Furthermore, their own processing time is negligi-
ble. Such operators are, for example

rename: stream(Tuple) x string -> stream(Tuple1)
count: stream(Tuple) -> int

The rename operator just changes tuple schemas by appending the second argument to the attribute
name, the tuple stream is just passed through. The count operator was discussed in Section 2.2. Similar
operators are sum, min, max, avg which just aggregate over a stream. In such cases, the operator can
simply return the progress information of its predecessor.

Operators Changing Tuple Sizes. Operators in this class change the tuple schema by either perform-
ing projection or adding derived attributes.

project: stream(Tuple) x attrname+ -> stream(Tuple1)
extend: stream(Tuple) x (newattrname x (Tuple -> Data))+-> stream(Tuple1)
groupby: stream(Tuple) x attrname+ x
 (newattrname x (Tuple -> Data))+ -> stream(Tuple1)

The project operator gets a stream of tuples and a list of attribute names (attrname+) and returns a
stream of projection tuples. For this operator it is obvious that one can compute new tuple size informa-
tion based on the Sizes fields in the progress information of the predecessor. To avoid unnecessary com-
putations, the attribute size vectors are allocated and filled only on the first progress query and then
stored in the local data structure of the projection operator. On every subsequent progress query, a
check is made whether the tuple size returned from the predecessor is still the one stored. Otherwise,
attribute size vectors are recomputed.

The extend operator in addition to the stream argument gets a list of pairs. Each pair consists of an
attribute name and an expression to be evaluated on the given tuple, returning a new attribute value. An
example use would be

query Highways feed extend[InFog: intersection(.Route, fog)] consume

– 13 –
Here a new attribute InFog is computed, of a spatial data type line, describing the geometry of the high-
way lying inside a fog area. For this operator, one cannot determine the size of attribute values from the
tuple schema but needs to observe it from the tuple flow. Here we proceed as follows. In the cold state,
we assume as a default that the size of the new attribute is that of an integer.7 As soon as tuples start to
flow through the operator, for the first s tuples (currently s is set to 5), we get the size of each derived
attribute from the new tuple and add it to a field in a temporary attribute size vector. When s tuples have
been read, a stable state is assumed and the size information stored in the operator’s local data structure
is updated accordingly. From then on, progress queries will get the average size information observed
on the first s tuples. The reason for observing only the first tuples is to avoid a large overhead in the
normal processing.

An operator that is handled by similar strategies is groupby, which also computes derived attributes for
each group of tuples. Its arguments are a stream of tuples ordered by grouping attributes, a list of
attributes for grouping and a list of pairs (attribute name, expression) defining new attributes to be com-
puted for each group.

Operators Changing Cardinality. Beyond filter, this is duplicate removal.

filter: stream(Tuple) x (Tuple -> bool) -> stream(Tuple)
rdup: stream(Tuple) -> stream(Tuple)

Filter was discussed in Section 2.2. The duplicate removal operator rdup works on a stream ordered
lexicographically by all attributes (see the sort operator below) and returns for adjacent equal tuples
only one instance.8 In the cold state we do not have selectivity information from the optimizer avail-
able. Here we assume a reduction in the number of tuples to 90% of the incoming tuples. In the warm
state, of course the observed ratio is used to determine the cardinality of the result stream. Other opera-
tors that change cardinalities and that can be handled by similar techniques are groupby and extend-
stream. The latter operator is similar to extend but the expression for the new attribute returns a stream
of values. An extended copy of the input tuple is returned for each value of the attribute stream.

Sorting. There are two sort operators in SECONDO with essentially the same implementation.

sort: stream(Tuple) -> stream(Tuple)
sortby: stream(Tuple) x (attrname x dir)+ -> stream(Tuple)

The first sorts lexicographically by all attributes and is usually employed together with the rdup opera-
tor; the second sorts by the mentioned attributes (the dir value is from the set {asc, desc}). Progress
estimation is done with the techniques of Section 2.2. Obviously, sort/sortby has a contribution to
blocking time and progress for the sorting stage; this is modeled similarly as it was shown for the prod-
uct operator in Section 2.3.

7. The rationale is that often integer attributes are derived. This is the current SECONDO implementation. One
could improve estimation for the cold state by using the size information for the derived data type if it is of
fixed size, or a type specific default, otherwise.

8. It is well known that duplicate removal by hashing is more efficient. The latter implementation is not avail-
able in the standard SECONDO system.This is in fact, because it is regularly added in a student exercise.

– 14 –
Join Operators.

product: stream(Tuple1) x stream(Tuple2) -> stream(Tuple3)
symmjoin: stream(Tuple1) x stream(Tuple2)

x (Tuple1 x Tuple2 -> bool) -> stream(Tuple3)
hashjoin: stream(Tuple1) x stream(Tuple2)

x attrname x attrname x int -> stream(Tuple3)
mergejoin: stream(Tuple1) x stream(Tuple2)

x attrname x attrname -> stream(Tuple3)
sortmergejoin: stream(Tuple1) x stream(Tuple2)

x attrname x attrname -> stream(Tuple3)
loopjoin: stream(Tuple1) x (Tuple1 -> stream(Tuple2)) -> stream(Tuple3)

Product and symmjoin are discussed in Section 2.2. All join operators except loopjoin can be handled
by techniques similar to those discussed for symmjoin. For example, they all use the same method to
assign tuple sizes, use optimizer selectivities or defaults in the cold state, and the observed ratio in the
warm state. Hashjoin9 and sortmergejoin have blocking times; mergejoin is non-blocking, being
applied to ordered streams.

The loopjoin operator is special as it has an opaque parameter function. It is supplied with each tuple of
the outer stream. For each argument tuple it yields a stream of tuples. Those are joined by loopjoin with
the outer tuple and returned. Usually it is used for index nested loop, but this is not required. Loopjoin
calls the parameter function many times, once for each tuple of the outer stream. It also needs to ask the
parameter function for its progress information. The question is how the parameter function, especially
in case of an index access, can offer a precise estimate. For example, a progress query may reach the
parameter function in the middle of evaluation for tuple #597 of the outer stream. The solution we have
come up with is that operators like exactmatch (a B-tree access operator, see below) count how many
times their Open message is called and remember how many tuples they have returned aggregated over
all calls. As an estimate of the cardinality for the current call they can then return the average number of
tuples returned over all previous calls. This technique works very well, as will be demonstrated in the
experiments.

Stream Sources - Relation and Index Access.

feed: rel(Tuple) -> stream(Tuple)
exactmatch: btree(Tuple) x rel(Tuple) x Data -> stream(Tuple)
range: btree(Tuple) x rel(Tuple) x Data x Data -> stream(Tuple)
leftrange: btree(Tuple) x rel(Tuple) x Data -> stream(Tuple)
rightrange: btree(Tuple) x rel(Tuple) x Data -> stream(Tuple)
windowintersects: rtree(Tuple) x rel(Tuple) x Spatial -> stream(Tuple)

Feed has been discussed in Section 2.2. Exactmatch, range, leftrange, and rightrange are search opera-
tions on a B-tree (as a secondary index). Arguments are the index, the indexed relation and constants
for search; these operators fetch tuples from the indexed relation and put them into the result stream.10

In fact, these operators all share the same parameterized implementation. Similarly, windowintersects is
a search operation on an R-tree, using the bounding box of the value of a spatial data type.

For index access operations, prediction of the total cardinality is not so easy. To achieve a simple imple-
mentation, we would like to avoid a deep analysis of the index traversal algorithm. Therefore in this
case we check whether the selectivity obtained from the operator tree is the default selectivity. In this
case, no good selectivity information is available and instead we use default values for the estimated
cardinality. Otherwise the selectivity from the operator tree is used. For queries constructed by the opti-

9. The fifth argument for hashjoin is the number of buckets to be used.
10. There exist also variants returning streams of tuple identifiers; these are not discussed here.

– 15 –
mizer, these values should be fairly exact, as such index accesses happen on base relations and no cor-
relations and propagated errors occur.

Progress is then measured by the number of tuples returned relative to the estimated cardinality. If the
operation is finished before the estimated cardinality is reached, we set the estimated cardinality to the
real cardinality. If the number of tuples returned exceeds the estimated cardinality based on the selectiv-
ity from the operator tree, we estimate a cardinality of 10% more tuples than have been returned
already.

If the index is used in an index nested loop join, we have explained above how precise estimates can be
given aggregating over previous calls, counting how many times the Open message was called.

5 Experiments

In this section, we show the results of some experiments to demonstrate operator-based progress esti-
mation. Experiments are done on a PC with a 2.66 GHz CPU and 1 GB main memory, running Win-
dows XP. Queries are performed on the standard TPC-H database [13] at scale factor 0.1, to avoid long
waiting times. 11

We consider the following queries, formulated as query plans. For each query, we show three graphs
depicting estimated progress P, estimated cardinality C and the estimated remaining time. The latter is
derived from progress (also in the SECONDO user interface) by the formula Trest = Telapsed ⋅ (1-P)/P. This
is compared to the real remaining time (shown as a straight line in the graphs) computed as Ttotal -
Telapsed. Note that in this paper we do not attempt to adapt progress estimation or the estimation of
remaining time to varying system loads (as e.g. [6, 7] do). The formula above simply assumes that
progress will be made in the future as quickly as it was made in the past. On the other hand, an exten-
sion to varying system loads is probably not difficult as one could relate future “speed of making
progress” to the progress speed within a time window for the recent past that defines the current system
load. But this is beyond the scope of this paper.

All quantities are shown relative to the elapsed time during execution of a query.

Query 1. LINEITEM feed filter[.lQUANTITY > 7] filter[.lSHIPDATE > theIn-
stant(1994,1,1)] count

The first query simply scans the lineitem relation evaluating two conditions. Results are shown in
Figure 12. Note that operations are generally applied in Postfix notation in SECONDO.

Figure 12: Query 1

11. Obviously, SECONDO as a research prototype is a bit slower than commercial systems.

0
20
40
60
80

100
120

0 10 20

Time [sec]

P
ro

gr
es

s
[%

]

0

10

20

30

40

0 10 20

Time [sec]

R
em

ai
ni

ng
 [s

ec
]

0

100

200

300

400

0 10 20

Time [sec]

C
ar

di
na

lit
y

[1
00

0s
]

– 16 –
One can observe that progress develops smoothly and the estimate of the remaining time is quite close.
Also the cardinality estimate is quickly very precise. The real cardinality is 374232. (In all following
queries the estimate at the end is the right one, so we will not mention the actual cardinalities any
more.) Note that this is a query plan without any use of optimizer estimates.

Query 2. LINEITEM feed filter[.lQUANTITY > 7] consume feed filter[.lSHIPDATE >
theInstant(1994,1,1)] count

This is essentially the same query but we have put a blocking operator into the middle of the query plan.
See Figure 13.

Figure 13: Query 2

Due to the blocking operator, nothing is known about the selectivity of the second condition until the
second filter operator gets into the warm state. As a result, cardinality estimation is wrong until then
and the estimate of the remaining time is considerably less precise. The progress curve looks still rela-
tively straight because the majority of the work belongs to the first stage (writing tuples in consume is
expensive).

Next, we consider application of the head operator to both the non-blocking and the blocking version of
this query.

Query 3. LINEITEM feed filter[.lQUANTITY > 7] filter[.lSHIPDATE > theIn-
stant(1994,1,1)] head[50000] count

Query 4. LINEITEM feed filter[.lQUANTITY > 7] consume feed filter[.lSHIPDATE >
theInstant(1994,1,1)] {0.710789, 0.1875} head[50000] count

In query 4, we have additionally inserted selectivity information obtained from the optimizer. Results
are shown in Figures 14 and 15.

Figure 14: Query 3

Query 3 has only about 20 progress measurements as the query runs only for two seconds. We have
connected them by a curve for better visibility. One can observe that progress estimation with the head
operator works fine, regardless of whether there is a blocking operator in the query plan. Hence our

0
20
40
60
80

100
120

0 50 100 150

Time [sec]

P
ro

gr
es

s
[%

]

0
100
200
300
400
500

0 50 100 150

Time [sec]

R
em

ai
ni

ng
 [s

ec
]

0

100

200

300

400

0 50 100 150

Time [sec]

C
ar

di
na

lit
y

[1
00

0s
]

0
20
40
60
80

100
120

0 1 2 3

Time [sec]

P
ro

gr
es

s
[%

]

0
5

10
15
20
25

0 1 2 3

Time [sec]

R
em

ai
ni

ng
 [s

ec
]

0
10
20
30
40
50
60

0 1 2 3

Time [sec]

C
ar

di
na

lit
y

[1
00

0s
]

– 17 –
strategy with propagating blocking time and blocking progress is confirmed. For query 4 in addition
estimation has become precise due to the available selectivity information from the optimizer.

Figure 15: Query 4

Query 5. select count(*) from [lineitem, orders] where [ototalprice > 300000,
oorderkey = lorderkey]

ORDERS feed project[oORDERKEY, oTOTALPRICE]
filter[(.oTOTALPRICE > 300000)] {0.034965, 0.1095}
loopjoin[lINEITEM_lORDERKEY LINEITEM exactmatch[.oORDERKEY]

project[lORDERKEY]] {7.992e-006, 0.016628}
count

Query 5 is meant to illustrate the loopjoin estimation discussed in Section 4. Here we have run the
query through the optimizer. See Figure 16. One can observe that the progress by loopjoin is very
smooth and the estimates of cardinality and remaining time quickly become very precise (note the scale
in the cardinality estimate).

Figure 16: Query 5

Query 6 shows nested hashjoins following an example from [6]; it is Query 2 in that paper.

Query 6. select [ccustkey, cacctbal, oorderkey, ototalprice, ldiscount, lex-
tendedprice] from [customer, orders, lineitem] where [ccustkey = ocustkey,
oorderkey = lorderkey, abs(int2real(lpartkey)) > 0]

CUSTOMER feed project[cACCTBAL, cCUSTKEY]
ORDERS feed project[oCUSTKEY, oORDERKEY, oTOTALPRICE]
 hashjoin[cCUSTKEY, oCUSTKEY, 99997] {5.5944e-005, 0.013308}
LINEITEM feed project[lDISCOUNT, lEXTENDEDPRICE, lORDERKEY, lPARTKEY]
 filter[(abs(int2real(.lPARTKEY)) > 0)] {0.999, 0.172}
 hashjoin[oORDERKEY, lORDERKEY, 99997] {7.992e-006, 0.016628}
 project[cCUSTKEY, cACCTBAL, oORDER KEY, oTOTALPRICE, lDISCOUNT,

lEXTENDEDPRICE]
consume

The second part is the plan generated by the optimizer including selectivity and predicate cost annota-
tions. Results are shown in Figure 17.

0
20
40
60
80

100
120

0 50 100

Time [sec]

P
ro

gr
es

s
[%

]

0
50

100
150
200
250

0 50 100

Time [sec]

R
em

ai
ni

ng
 [

se
c]

42
44
46
48
50
52

0 50 100

Time [sec]

C
ar

di
na

lit
y

[1
00

0s
]

0
20
40
60
80

100
120

0 5 10

Time [sec]

P
ro

gr
es

s
[%

]

0
2
4
6
8

10

0 5 10

Time [sec]

R
em

ai
ni

ng
 [s

ec
]

34
35
36
37
38
39

0 5 10

Time [sec]

C
ar

di
na

lit
y

[1
00

0s
]

– 18 –
Figure 17: Query 6

One can observe that cardinality estimation first relies on the optimizer estimate which is fairly good.
As soon as the second hashjoin gets into the warm state, selectivity estimation is refined. The first esti-
mates are a bit off, but this quickly stabilizes.

Query 7.
CUSTOMER feed project[cACCTBAL, cCUSTKEY]
ORDERS feed project[oCUSTKEY, oORDERKEY, oTOTALPRICE]

hashjoin[cCUSTKEY, oCUSTKEY, 99997]
LINEITEM feed project[lDISCOUNT, lEXTENDEDPRICE, lORDERKEY, lPARTKEY]

filter[(abs(int2real(.lPARTKEY)) > 0)]
hashjoin[oORDERKEY, lORDERKEY, 99997]
project[cCUSTKEY, cACCTBAL, oORDERKEY, oTOTALPRICE, lDISCOUNT,

lEXTENDEDPRICE]
consume

This is actually the same query and the same plan as in query 6, but we have removed all optimizer esti-
mates. Results are shown in Figure 18.

Figure 18: Query 7

Comparing to Figure 17, one can see that the lack of optimizer information is disastrous. As long as the
second hashjoin is in the cold state, no reasonable estimate of the total work can be made. Hence
progress is vastly overestimated in the first stage. After about 25 seconds, the second hashjoin gets into
the warm state and then estimations have to be sharply revised. This experiment confirms the expected:
optimizer annotations in query plans are indispensable for queries with blocking operators.

Finally, Figure 19 shows the progress graphs for the four TPC-H queries 1, 3, 5, and 10. These are all
the TPC-H queries that SECONDO can evaluate as its optimizer does not support subqueries.12 The
graph for query 1 shows some steps; this is due to the fact that the query computes aggregates over four
large groups and progress is not increased while the group-by operator scans its buffer. The graph for
query 3 is not quite satisfactory; presumably the paging behaviour of a join algorithm is not modelled

12. Note that this is just a gap in the optimizer. Basically, subqueries can be unnested into joins or translated
less efficiently into nested loops. The SECONDO execution system could handle these translations and
progress estimation would work for them. We are currently working on implementing subqueries in the
optimizer.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

Time [sec]

Pr
og

re
ss

 [%
]

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

Time [sec]

R
em

ai
ni

ng
 T

im
e

[s
ec

]

520

530

540

550

560

570

580

590

600

610

0 10 20 30 40 50 60 70

Time [sec]

C
ar

di
na

lit
y

[1
00

0s
]

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80

Time [sec]

Pr
og

re
ss

 [%
]

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Time [sec]

R
em

ai
ni

ng
 T

im
e

[s
ec

]

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80

Time [sec]

C
ar

di
na

lit
y

[1
00

0s
]

– 19 –
precisely enough. Nevertheless the graphs demonstrate that the progress estimation is quite usable, also
for complex queries.

Figure 19: Progress Graphs for TPC-H Queries 1, 3, 5, 7 (top left, right, bottom left, right)

6 Discussion

In this section we discuss some questions that have not been addressed so far, namely overhead, “ad-
hoc” constants and thresholds for switching to the warm state, and dealing with non-random orders.

6.1 Overhead

The following kinds of overhead for progress estimation arise in our implementation:

 (i) Watching the time in the Eval function to check whether a progress query should be sent.
 (ii) Evaluating a progress query and adjusting the progress display. This happens roughly ten times

per second.
 (iii) Maintaining counters in the implementation of query processing operators. Essentially for each

tuple read or returned, a counter is incremented.
 (iv) For very few operators (extend and groupby) observing tuple sizes for the first few tuples of a

tuple stream (currently 5 tuples, see Section 4).

The cost for item (i) is extremely small, as can be seen above, and we have not been able to measure it.
Similarly, the cost for incrementing counters in tuple processing (item (iii)) is clearly negligible com-
pared to other code that is executed.

For item (iv), the cost will usually be very small, as only the first few tuples of each stream create this
overhead. Nevertheless, situations are conceivable, for example in processing group-by queries, when a
derived attribute of unknown size is computed for each tuple of a group, and all groups are quite small
so that a large fraction of the tuples processed will have the overhead of measuring attribute sizes. In

0
20
40
60
80

100
120

0 50 100 150

Time [sec]

P
ro

gr
es

s
[%

]

0
20
40
60
80

100
120

0 20 40 60

Time [sec]

[P
ro

gr
es

s
[%

]

0
20
40
60
80

100
120

0 10 20 30

Time [sec]
P

ro
gr

es
s

[%
]

0
20
40
60
80

100
120

0 10 20

Time [sec]

P
ro

gr
es

s
[%

]

– 20 –
such cases a measurable overhead may exist. However, these cases are very rare and we have not yet
checked this experimentally.

Hence what is still an open question is the cost of processing a progress query (item (ii)). Since here
larger sections of code are executed, one might expect a tangible overhead. We have evaluated this
experimentally.

In the experiment, a script was run that executes the four TPC-H queries 1, 3, 5, and 10 (see also
Figure 19). These are sizeable queries whose query plans involve a large number of operations. The
Eval function of the query processor was modified for the experiment to trigger a loop of 1000 progress
queries after 5 seconds of query evaluation. Since each progress query creates an entry in a protocol file
which includes the clock time, one can measure rather precisely the cost for 1000 progress queries. The
results are shown in Table 1.

For example, the protocol file contains 1000 lines with equal progress value shortly after time 5000 for
query 1 and the first line has clock time 5062, the last 5109. Hence the time per progress query is about
47 microseconds for fairly complex queries. Times for queries 1 through 4 are almost equal because
system clock times are not incremented continuously but only in increments of about 15 to 16 ms. We
conclude that the overhead for processing ten progress queries per second is about 0.5 ms, hence
0.05%.

With respect to overhead, previous papers have mentioned that it is low [3, p. 804 bottom] or negligible
[3, p. 809 top]. There are no experiments about this. Reference [6, Section 5, first par.] says that
progress indicators could be updated every ten seconds with less than 1% overhead. This seems to
imply that performing a progress evaluation takes about 0.1 seconds. Compared to 0.047 milliseconds,
the overhead appears to be larger by a factor of about 2000.

We do not suggest that overhead is a problem in the other approaches, but definitely in SECONDO it is
very small.

6.2 Default Values and Threshold for the Warm State

There are two kinds of ad-hoc constants used in the approach:

• qp.Sel - the default selectivity of a predicate and qp.PredCost - the default cost of a predicate,
with qp.Sel = 0.1 and qp.PredCost = 0.1.

• The threshold for the number of tuples returned by filter and join operators for switching into the
warm state, i.e. the number of positive predicate evaluations. Here the threshold value 50 was
mentioned.

Query start time loop [ms] end time loop [ms] time for 1000
progress queries [ms]

 per query
[ms]

Query 1 5062 5109 47 0.047

Query 3 5016 5062 46 0.046

Query 5 5032 5079 47 0.047

Query 10 5047 5094 47 0.047

Table 1: Evaluating 1000 progress queries

– 21 –
Default Values. For the first kind of constants, please note that they are only used when queries are
posed at the executable level, i.e. entered into the system as query plans without using the optimizer.
This is a mode of operation that is not at all supported by the systems described in previous work (see
Section 7) which always start from optimizer estimates.

The constant 0.1 for the selectivity of an arbitrary predicate is clearly ad-hoc, but what can one do with-
out query optimization and when selectivity has not yet been observed? On the other hand, the constant
0.1 [ms] for predicate cost is a fairly reasonable assumption that holds for simple standard predicates in
SECONDO.

Threshold for the Warm State. Obviously, selectivity estimation gets the more reliable the more eval-
uations have been observed. So why is 50 a reasonable value; could it be 5 or should it be 1000?

Our goal in this subsection is to analyse the reliability of the estimate depending on the threshold value.
To make a mathematical analysis possible, we first make some (idealized) assumptions.

• A stream of tuples passing through a filter operator appears in random order with respect to the
selection predicate.

• The pairs of tuples examined in a join operator appear in random order with respect to the join
predicate.

• For each tuple or pair of tuples examined, the probability that the predicate is fulfilled is the same
and equal to the selectivity of the predicate.

These assumptions will not always hold, but they help us to get a handle on reasonable sizes of the
threshold. In the next subsection we discuss how to deal with non-random orders.

If the assumptions hold, the number of successes for the sequence of predicate evaluations can be mod-
elled by a binomial random variable. That is, the probability that after n trials (tuples, pairs of tuples),
each with probability p of being a success, we have k successes (returned tuples), is:

It is well known that the binomial distribution can be approximated by a normal distribution, and that
this approximation is quite good when np(1-p) ≥ 10. This is useful when n is large.

Now suppose w is our threshold for the warm state and we have seen w successes after n experiments
(i.e. have returned w tuples after n tests). We will then estimate the selectivity to be p’ = w/n. What is
the probability that the estimated selectivity p’ is within a factor e of the true selectivity p?

We argue as follows. We will consider the two cases (i) p’ < p and the error is greater than factor e, and
(ii) p’ > p and the error is greater than factor e.

Case (i). Suppose p’ < p and the error is greater than factor e, hence p’ < (1 - e) p. The unknown true
selectivity p is anywhere in the interval [p’/ (1 - e), 1]. Now consider the case that the true selectivity p
is as close as possible to the estimated selectivity p’, hence let p = p’/ (1 - e). For this selectivity, the
probability c that the outcome of an experiment is in fact within the error range e is given by the cumu-
lative distribution function of the normal distribution within the range [(1 - e) p, (1 + e) p].

Figure 20 illustrates the case that for n = 1000, w = 40 the outcome of our “experiment” is e = 1/3 off
the expected value of 60 for a given true selectivity of 0.06. The area under the curve within the range
[40, 60] defines the probability that the error for such an outcome of the experiment is less than 1/3.

(1)k n kn
p p

k
−⎛ ⎞

−⎜ ⎟
⎝ ⎠

– 22 –
If the true selectivity p is larger than p’/ (1 - e), then the area under the curve gets even larger, as the
normal distribution curve is shifted to the right (this seems obvious but is not proved here). Therefore c
is a lower bound for error e and the case p’ < p.

Case (ii). By similar reasoning we can obtain a lower bound c’ for error e and the case p < p’.

Finally c” = min{c, c’} is a lower bound on the probability that the error is within factor e of the true
selectivity p.

Of course, one can argue about what kind of precision is still useful for progress estimation. In any case,
with w = 50 selectivity estimates are fairly reliable if the assumption holds that tuples arrive in random
order.

We have evaluated c” for thresholds w = 10, 20, 50, and 200, errors ranging from 10% to 50% and var-
ious numbers n of tuples checked. The results for w = 10 and w = 50 are shown in Tables 2 and 3.

Figure 20: Normal distribution corresponding to parameters p = 0.06, n = 1000

Error e n = 200 500 1000 10000 500000

10% 0.24 0.24 0.24 0.24 0.24

20% 0.44 0.44 0.44 0.44 0.44

30% 0.60 0.60 0.60 0.59 0.59

40% 0.72 0.72 0.72 0.72 0.71

50% 0.81 0.81 0.80 0.80 0.80

Table 2: Threshold w = 10

Error e n = 200 500 1000 10000 500000

10% 0.56 0.52 0.51 0.50 0.50

20% 0.85 0.82 0.81 0.80 0.80

30% 0.96 0.95 0.94 0.94 0.94

40% 0.99 0.99 0.99 0.98 0.98

50% 1.00 1.00 1.00 1.00 1.00

Table 3: Threshold w = 50

-0,01

0

0,01

0,02

0,03

0,04

0,05

0,06

0 20 40 60 80 100 120

– 23 –
One can observe that for a threshold w = 10 the probability is only about 80% that the error in the selec-
tivity estimation is less than 50%. For threshold w = 50, with at least 94% probability we can guarantee
that the error is less than 30%.

6.3 Dealing With Non-Random Orders

As we have just seen, adaptive selectivity estimation relies on the assumption that tuples are processed
in random order with respect to the predicate evaluated.

Note that the assumption is NOT that tuple streams occur in random order, but that their order is unre-
lated to the predicate evaluated. So one has to take special care of the case that a predicate is evaluated
on a tuple stream that is related to the order of that stream.

One can easily see what should not happen: A relation R is stored ordered on attribute X and then a
range predicate of the form X < a, X > a, or a < X < b is evaluated by scanning the relation, that is:

R feed filter[.X < a] ...

For example, for predicate X < a the selectivity would be estimated to be about 1.0 after switching into
warm state until a is reached; then it would decrease to a possibly quite small value, if a is small.

This can be generalized to relations stored clustered in any way, for example, organizing spatial data in
a (primary) R-tree, and then asking any kind of range query.

Ordered tuple streams occur mainly for the following reasons:

• A relation is stored in primary key order, or otherwise clustered by some attribute, and then
scanned.

• A tuple stream is created through an index access and has the order of that index.
• Intermediate operations in query processing, e.g. sortmergejoin, sorting, create the order.

We discuss two possible strategies to avoid wrong selectivity estimates due to order:

• Keeping track of orders
• Checking for random order

Keeping Track of Orders. The first strategy relies on the fact that query optimizers generally are
aware of the orders of base relations and keep track of the orders of the tuple streams in the query plans
they generate. The query plans constructed are then modified according to the following rules:

• If a base relation is stored in some order (e.g. organized by a B-tree or R-tree), then a predicate
related to that order is never evaluated by scanning the relation. Instead, the appropriate access
operation such as a range query on the B-tree or R-tree is used. In fact, most optimizers will do
this anyway.

• If an order related predicate is evaluated on an ordered stream, the filter or join operator is
informed by a suitable mechanism not to go into warm state, but instead to stay with the opti-
mizer estimate. (For example, the selectivity estimate used in the annotation of the query may be
marked in some way.)

Essentially this switches off the adaptive behaviour of that operator when it would be wrong.

Checking for Random Order. The idea of the second strategy is to check in the implementation of an
adaptive operator whether the tuple stream arriving appears to be in random order.

– 24 –
Consider a sequence of predicate evaluations that have occurred in the filter operator at the time when it
is supposed to switch to the warm state (see Figure 21). Here the threshold is w = 5, i.e., 5 positive eval-
uations are needed to switch to the warm state.

Figure 21: Sequences of predicate evaluations (black = true, white = false)

Intuititively, for an input stream in random order we would expect a pattern like (a). In contrast, pattern
(b) could correspond to a predicate a < X < b where value a has just been passed.

For pattern (c), one cannot decide whether it is a random pattern for a very high selectivity, or a range
query of the form X < a which will switch to false some time later. For this reason, we now extend the
threshold condition to require that both the number of positive and the number of negative evaluations
must be larger than the threshold w. Under this assumption, the transition to warm state is reached in
patterns (d) and (e) since enough evaluations with outcome false have been observed. Patterns (d) and
(e) are then symmetric to (a) and (b): pattern (d) appears to show random order and pattern (e) exhibits
some order.

Different criteria can be used to decide whether a sequence of outcomes appears to confirm random
order. If only range predicates on totally ordered streams need to be handled, one could simply check
whether all positive evaluations follow all negative evaluations, as in pattern (b), or the symmetric case
as in (e). This criterion is too strict, if also predicates like range queries on spatial data are considered,
where the base relation is stored in z-order, for example. Hence we suggest a more general criterion
based on the lengths of intervals of the same result. For example, pattern (a) has “white” intervals of
lengths 6, 4, 9, 3, 5. For a random order, the expected length of such an interval is n/w, that is, 32/
5 = 6.4. Pattern (b) has a white interval of length 27.

Let pos, neg denote the numbers of positive and negative evaluations, respectively, and let pos < neg,
pos = w, neg = n-w. Let maxneg denote the length of the longest continuous interval of negative evalua-
tions. Also assume w ≥ 20. A suitable criterion might be:

The sequence is supposed to be in random order :⇔ maxneg < n/2.

Similarly for pos ≥ neg, the criterion would be maxpos < n/2.

Essentially this means that if we observe a continuous subsequence of more than n/2 negative evalua-
tions, given that the expected length of such a sequence is n/w < n/20, we have enough suspicions that
this is not a random order. In this case the operator will not go into warm state and instead continue to
rely on the optimizer estimate.

Keeping track of the maximal length of positive or negative intervals is easy to implement in constant
space and adds only negligible overhead.

In summary, both strategies essentially switch off adaptive selectivity estimation for operators that eval-
uate predicates related to the order of the processed stream of tuples, and so prevent wrong estimates.
The second strategy may be easier to implement as it does not require changes to the optimizer.

(a)

(b)

(c)

(d)

(e)

– 25 –
6.4 Pipelining

Previous work (especially [2, 3]) has argued that observation of the behaviour only of driver nodes in a
pipeline for estimating the progress of the whole pipeline is more robust against errors in selectivity
estimation than observing each operator node individually. This is true in principle. Nevertheless, there
are two answers to this:

 (i) If the advice of the previous two subsections is followed and the optimizer does a reasonable job,
then usually the intermediate selectivity estimations in a chain of operators will be quite precise.
This is also confirmed by our experiments.

 (ii) It is possible to some extent to support pipelining in our operator-based approach, still without
ever analyzing query plans globally.

To see (ii) consider a chain of operators op1 op2 ... opn working in a pipeline with op1 as a driver node.
For example, op1 may be R feed. Pipelined progress estimation means that

Progress(opi+1) = Progress(opi), for 1 < i ≤ n.

Hence the feed operator with its very robust progress measure Pfeed = m/C determines the progress of
all operators in the pipeline (m the number of tuples read, C the total cardinality). This means that for
operators op like filter, project, consume, loopjoin, etc. we should define

Pop = P1

Instead, in Section 2.2 we have defined progress for such operators in the form:

Pop = (P1T1 + mX) / (T1 + CX) (*)

Here X is the cost of processing a tuple. When do the two definitions agree? If we set P1 = (P1T1 + mX)
/ (T1 + CX) we can derive

P1= m/C

Hence, if the driver node of a pipeline has a progress measure m/C and it is followed by a chain of oper-
ators with definitions of the form (*), then indeed all these operators have progress m/C and we can
ignore intermediate cardinality estimates.

The simple formula Pop = P1 is not valid, however, if the progress of the predecessor, i.e. P1, is different
from m/C. This is the case when blocking operators occur before this pipeline.

Fortunately, with the techniques of Section 2.3, we know whether there are blocking operators in a
query plan; this is the case when the blocking time of the predecessor is different from 0. As a conse-
quence, we have modified13 the progress formulas for suitable operators like e.g. filter, project, con-
sume, loopjoin, to the form:

Hence any initial pipelines in a query plan before blocking operators enjoy the robustness of pipelining.
First experiments designed to create very wrong selectivity estimates (without using the safeguards of
Section 6.3) indeed show a better behaviour of the pipelined version. A detailed experimental compari-
son is left to future work.

13. The current SECONDO implementation allows one optionally to select this “pipelined” mode or the formu-
las presented before.

1 1

1 1 1

if 0
() / otherwiseop

P BT
P

PT mX T CX
≈⎧

= ⎨ + +⎩

– 26 –
7 Related Work

The approaches of the two groups [3, 2], and [6, 7, 8] are somewhat similar. We first discuss the initial
papers [3, 6]. Both decompose the operator tree for the query into disjoint subtrees such that within
each subtree operators are non-blocking and work in a pipeline [3] (called segment in [6]). Both
approaches identify entry points of the pipeline as points to be observed (called driver nodes in [3],
dominant inputs in [6]). As a measure of progress, [3] use the number of tuples returned by either all
operators or just the driver nodes; [6] count numbers of bytes corresponding to full pages that are read
or written at the boundaries of segments. Both assume that the cost per tuple or page in different pipe-
lines (segments) is the same.

Both approaches start from the given optimizer estimates of intermediate cardinalities. [6] refine these
estimates based on observed selectivities using a gradual transition from the optimizer estimate to the
observed selectivities. [3] are more conservative and maintain upper and lower bounds on cardinalities;
only if by algebraic properties of the operators it is certain that the optimizer’s estimate is wrong (i.e.
lies outside the bounds), the estimate is corrected.

The follow-up paper [7] tries to increase the scope of the techniques, e.g. by handling nested queries, as
well as the accuracy. The authors observe that the granularity of segments is too large to make precise
predictions in certain cases and come up with a refined definition such that a segment contains no more
than one join operator. In the next step, a segment is redefined to also contain only one set operator (like
set difference on ordered streams). The approach of [6, 7] is further extended in [8] to consider multiple
queries that are running concurrently or even predicted to arrive in the future.

In [2] the authors focus on deriving worst case guarantees, considering the problem from a theoretical
point of view. They show that in the worst case only trivial progress estimations can be given. But they
also identify “good” scenarios where rather tight bounds can be provided.

Mishra and Koudas [10] improve cardinality estimations for joins and pipelines of joins by maintaining
histograms for intermediate results. They also develop techniques to precisely estimate the number of
groups in groupby operators.

Progress estimation is more generally related to work using feedback from query execution. This
includes reoptimization techniques [5, 9, 1], methods to improve statistics for future queries, e.g. [12],
or online aggregation [4].

8 Conclusions

We have shown that a strictly modular, operator based query progress estimation is possible. Major
advantages over previous work are the following:

• From a software engineering point of view, the approach is far more modular as each operator
can be considered independently. Adding further query processing operators to a system or to
progress estimation is much easier.

• A precise cost modeling for each operator is possible, as in query optimization, so that the cost
for not yet active operators (pipelines) can be estimated precisely. Hence there is a potential for a
more precise progress estimation.

• Because the technique is integrated deeply into query processing, the overhead is extremely low.
For the progress queries themselves we have shown it to be less than 0.1 %.

– 27 –
Future work includes a more precise cost modeling for complex queries, especially to model more
exactly operators that need disk I/O such as sorting and sort-mergejoin. So far, this was modeled only
for hashjoin somewhat precisely. Furthermore, we now plan to extend progress estimation to the non-
standard applications in SECONDO, dealing with spatial join and expensive predicates, for example.

Acknowledgments

I am grateful to Werner Detemple, Markus Spiekermann, and Thomas Behr for their help in implement-
ing progress estimation in SECONDO.

References

[1] S. Babu, P. Bizarro, and D. DeWitt, Proactive Re-Optimization. Proc. ACM SIGMOD 2005, 107-
118.

[2] S. Chaudhuri, R. Kaushik, and R. Ramamurthy, When Can We Trust Progress Estimators for SQL
Queries? Proc. ACM SIGMOD 2005, 575-586.

[3] S. Chaudhuri, V. Narasayya, and R. Ramamurthy, Estimating Progress of Long Running SQL
Queries. Proc. ACM SIGMOD 2004, 803-814.

[4] J.M. Hellerstein, P.J. Haas, and H.J. Wang, Online Aggregation. Proc. ACM SIGMOD 1997, 171-
182.

[5] N. Kabra and D. DeWitt, Efficient Mid Query Reoptimization of Sub-Optimal Query Execution
Plans. Proc. ACM SIGMOD Conf. 1998, 106-117.

[6] G. Luo, J.F. Naughton, C.J. Ellmann, and M.W. Watzke, Toward a Progress Indicator for Database
Queries. Proc. ACM SIGMOD 2004, 791-802.

[7] G. Luo, J.F. Naughton, C.J. Ellmann, and M.W. Watzke, Increasing the Accuracy and Coverage of
SQL Progress Indicators. Proc. ICDE 2005, 853-864.

[8] G. Luo, J.F. Naughton, and P.S. Yu, Multi-query SQL Progress Indicators. Proc. EDBT 2006, 921-
941.

[9] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic, Robust Query Pro-
cessing Through Progressive Optimization. Proc. ACM SIGMOD 2004, 659-670.

[10] C. Mishra and N. Koudas, A Lightweight Online Framework for Query Progress Indicators. ICDE
2007.

[11] SECONDO Website. http://www.informatik.fernuni-hagen.de/import/pi4/Secondo.html/
[12] M. Stillger, G. Lohman, V. Markl, and M. Kandil, LEO: DB2’s Learning Optimizer. Proc. VLDB

2001, 19-28.
[13] TPC Benchmark H. Decision Support. http://www.tpc.org.

Verzeichnis der zuletzt erschienenen Informatik-Berichte

[327] Heutelbeck, D.: Distributed Space Partitioning Trees and their Application in Mobile
Computing

[328] Widera, M., Messing, B., Kern-Isberner, G., Isberner, M., Beierle, C.:
Ein erweiterbares System für die Spezifikation und Generierung interaktiver
Selbsttestaufgaben

[329] Fechner, B.:
A Fault-Tolerant Dynamic Multithreaded Microprocessor

[330] Keller, J., Schneeweiss, W.:
Computing Closed Solutions of Linear Recursions with Applications in Reliability
Modelling

[331] Keller, J.:
 Efficient Sampling of the Structure of Cryptographic Generators’ State Transition
 Graphs
[332] Fisseler, J., Kern-Isberner, G., Koch, A., Müller, Chr., Beierle, Chr..:
 CondorCKD – Implementing an Algebraic Knowledge Discovery System in a

Functional Programming Language
[333] Cenzer, D., Dillhage, R., Grubba, T., Weihrauch, K..:

 CCA 2006 - Third International Conference on Computability and Complexity in
Analysis

[334] Fechner, B., Keller, J.:
Enhancement and Analysis of a Simple and Efficient VLSI Model

[335] Wilkes, W., Ondracek, N., Oancea, M., Seiceanu, M.:
Web services to resolve concept identifiers supporting effective product data
exchange

[336] Kunze, C., Lemnitzer,L., Osswald, R. (eds.):
GLDV-2007 Workshop - Lexical-Semantic and Ontological Resources

[337] Scheben, U.:
 Simplifying and Unifying Composition for Industrial Models
[338] Dillhage, R., Grubba, T., Sorbi, A., Weihrauch, K., Zhong, N.:

 CCA 2007 – Fourth International Conference on Computability and Complexity in
Analysis

[339] Beierle, Chr., Kern-Isberner, G. (Eds.): Dynamics of Knowledge and Belief -
Workshop at the 30th Annual German Conference on Artificial Intelligence, KI-
2007

[340] Düntgen, Chr., Behr, Th., Güting R. H.: BerlinMOD: A Benchmark for Moving Object
Databases

[341] Saatz, I.: Unterstützung des didaktisch-methodischen Designs durch einen
Softwareassistenten im e-Learning

[342] Hönig, C. U.: Optimales Task-Graph-Scheduling für homogene und heterogene
Zielsysteme

	Güting3
	Güting_Operator-Based_Query_Progress_Estimation_2008

