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Abstract: A voltage source is modeled by a semiclassical perturbation
of the quantum momentum operator. Applying the quantum formal-
ism we obtain a formula for the electric current in a 1-dimensional piece
of metal. It turns out that for the model based dependence between
voltage and current Ohm’s law is valid for a realistic range of voltages.
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1. Introduction

Recently (cf. [1],[2],[3]) quantum models based on a discrete position
space have drawn some attention. These models entail that quantum
observables that are modeled by self-adjoint operators, can be repre-
sented by Hermitian matrices. This approach turns out to be attractive
from computational viewpoint and enables us to build bridges between
mathematical models, statistical evaluations of computer experiments
and outcomes of laboratory measurements.

In the present contribution we model a microscopic voltage source by a
formula for the momentum of an electron which depends in particular
on temperature (Section 2). In Section 3 we present a lattice which
serves as a discrete position space and construct a semiclassical mo-
mentum operator perturbed by the action of the voltage source. We
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introduce the corresponding quantum Gibbs state and show a possibil-
ity of computing the values of an electric current indicator depending
linearly on the voltage of the source (Sections 4 and 5). A graphical
comparison between the model predictions and empiric values of resis-
tivity is presented in Section 6. We conclude with Section 7 where the
model prediction of the dependence of electric resistance on tempera-
ture is presented and discussed.

2. A Characterization of a DC-Voltage Source by the
Momentum of the Electrons

Let

e = 1.60219 · 10−19 C

denote the elementary electric charge. (The charge of an electron can
be approximated by −e).

For modeling a voltage source of spatial extent a > 0 and at tem-
perature T > 0 we assume that a homogeneous electrostatic field of
strength E is present in the source, which corresponds to the voltage

(2.1) U = E · a.
Let m = 9.109534 · 10−31 kg denote the electron mass and kB =
1.3806488 · 10−23 J/K the Boltzmann constant.

In Section 3 quantity a will be interpreted as a distance between ad-
jacent atom rumps in a lattice La which electrons are also confined
within. Therefore we call quantity

(2.2) γ :=

(
m · kB · T

)1/2
a

as coefficient of thermal impediment of electrons moving within lattice

La where
(
m · kB · T

)1/2
is the Maxwell-Boltzmann dispersion of the

thermal momentum of an electron.

Let v(t) denote the velocity of an electron as function of time. The
differential equation representing the balance of forces acting on the
electron ist given by

(2.3) m · d
dt
v(t) + γ · v(t) = −E · e.

The term γ · v(t) in (2.3) may be interpreted as the frictional force
which ist opposed to the motion of the electron. The time asymptotic
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velocity v in (2.3) is given by

(2.4) v = lim
t→∞

v(t) = −E · e
γ

which corresponds to the asymptotic momentum

(2.5) p = m · v = − E · e ·m · a(
m · kB · T

)1/2
imposed on the electron (cf. (2.1) and (2.2)) by the voltage source.

3. Finite Lattice and the Momentum Operator

Let us consider a finite lattice

La := {na|n = 1, . . . , N}
of N points modeling a discrete position space; parameter a > 0 is
called lattice constant. La serves as a model of an 1-dimensional con-
ductor. A quantum state of an electron confined within the conductor
is described by a function ϕ : La → C satisfying the condition

N∑
n=1

|ϕ(na)|2 = 1.

In this context |ϕ(na)|2 is interpreted as the probability of spatial as-
sociation of the electron with lattice point na ∈ La. By a standard
identification, the set of all states of the electron can be viewed as the
unit sphere in CN .

The unperturbed quantum momentum operator p̂(0) : CN → CN is
defined by
(3.1)

(p̂(0)ϕ)(na) = −i~ · ϕ((n+ 1)a)− ϕ((n− 1)a)

2a
(n = 1, . . . , N)

where ~ denotes Planck’s constant; in (3.1) the convention

ϕ(na) = 0 for n < 1 and for n > N

is applied and can be interpreted as Dirichlet boundary condition (cf. [2],
p. 28ff). p̂(0) is self-adjoint and serves as a discrete central difference
approximation of the 1-dimensional momentum operator

−i~ · d
dx

for the position space modeled by the real line.
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Let us assume that at the site na = Na/2 a microscopic DC voltage
source is active and perturbs the momentum operator p̂(0) by p̂(1) whose
matrix representation is given by

(3.2) p̂
(1)
jk =

{
p for j = k = N/2

0 elsewhere

where p is the semiclassical momentum modeling the action of the volt-
age source, cf. (2.5). Accordingly, the perturbed momentum operator
p̂ is given by

(3.3) p̂ = p̂(0) + p̂(1).

Let e(j) denote the jth canonical unit vector in CN for j = 1, . . . , N .
To illustrate the perturbed momentum operator p̂ we point out that

〈e(j), p̂e(j)〉 = δjn · p

holds where δjk and 〈., .〉 denotes the Kronecker symbol and the scalar
product of CN , respectively, and n = N/2 indicates the location of the
voltage source.

Remark 3.1.
The matrix representing operator p̂ is Hermitean.

4. The Gibbs State of the Electron

Let us consider the Hamiltonian

Hp =
p̂2

2m
.

Operator Hp describes the energy of an electron confined within lattice
La.

Let T > 0 denote the temperature of the lattice. The operator GT,p :
CN → CN modeling the Gibbs state of the electron is given by

(4.1) GT,p =
1

Z(T, p)
· exp

(
− 1

kB · T
·Hp

)
where

(4.2) Z(T, p) := trace

(
exp

(
− 1

kB · T
·Hp

))
denotes the partition function. GT,p is a positive operator whose trace
is equal to 1. Operator GT,p is motivated by the entropy principle
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(cf. [4], p. 384) and describes the thermal equilibrium state of the elec-
tron confined within lattice La with the interpretation of the diagonal
entry GT,p(j, j) as the probability of spatial association of the electron
with lattice point ja.

5. The Electric Current and its Dependence on U

The operator v̂ : CN → CN ,

v̂ :=
p̂

m
,

describes the velocity of the electron confined within lattice La where
p̂ is the perturbed momentum operator introduced in Section 3.

The quantum expectation Eq(v̂) of the velocity of the electron whose
state is described by GT,p, is given by

(5.1) Eq(v̂) = trace(GT,pv̂).

Since the operators GT,p and v̂ are self-adjoint, the expectation in (5.1)
is a real number.

The current indicator

(5.2) I = −Eq(v̂) ·Ne
Na

= −Eq(v̂) · e
a

is equal to the quantum expectation of the velocity multiplied by the
density of the mobile electric charge present in the lattice.

Equations (2.1),(2.5),(5.1) and (5.2) enable us to relate the voltage U
of the source with the corresponding current I in the lattice.

Example 5.1.
Put N = 300, a = 10−10m, T = 300K. In a computer experiment we
let the voltage U of the source vary and compute for each value of E
the corresponding value I of the current indicator.
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Fig. 1: U − I-diagram

In Figure 1 the horizontal axis corresponds to strength E of the electric
field (the physical unit is V/m) modeling the voltage source (cf. (2.1))
and the vertical axis to the quantum current I in A, cf. (5.2). The
diagram shows that the current is a linear function of U for the val-
ues of the electric field E from the interval [−109 V/m, 109 V/m] which
complies with Ohm’s law. The departure from linearity in Fig. 1 oc-
curs only for very strong electric fields which are difficult to explore
empirically.

6. Model Based vs. Empiric Electric Resistivity

Since the linearity in Fig. 1 extends over the whole interval [−109 V/m, 109 V/m]
we can select an arbitrary value E thereof, compute the corresponding
current I and estimate the resistance R of the lattice according to

(6.1) R =
U

I
.

The indicator sm of the resistivity is then given by

(6.2) sm =
R

N · a
.
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Fig. 2: Model Based vs. Empiric Resistivity

Fig. 2 shows a comparison between the model based and the empiric re-
sistivity for a selection of metals yielding the correlation coefficient 0.66
between sm and its empiric pedant. Although we cannot claim that our
semiclassical model predicts the empiric resistivity for all metals, we
emphasize the fact that lattice constant a is the only material specific
quantity involved in the computation of the r. h. s. of (6.2).

7. Model Based Resistance vs. Temperature

In this Section we would like to show the dependence of electric re-
sistance R (cf. (6.1)) of the lattice La on temperature. In Fig. 3 the
horizontal axis corresponds to the temperature of the lattice in the
range 0-1000 K and the vertical one to the electric resistance deter-
mined for our model. The diagram shows that the model resistance is
reduced for low temperatures which is in a qualitative agreement with
empiric observations.
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Fig. 3: Model Based Resistance vs. Temperature
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