A Modal Logic for Cantorian Subset Spaces

Heinemann, Bernhard GND

Based on a modification of Moss' and PARIKH 's topological modal language [MP], we generalize a weakly expressive fragment of propositional branching time logic. To be more precise, we restrict ourselves on binary branching. We define a trimodal logic comprising a knowledge - operator and two nexttime - operators. These operators are mterpreted in Cantorian subset spaces, which are generalizations of the well-known Cantor space of all infinite O - 1 - sequences. We present an axiomatization of the set T of theorems valid for this dass of semantical domains and prove - as the main result of the present paper - its completeness. Moreover, decidability of T is shown.

Vorschau

Zitieren

Zitierform:

Heinemann, Bernhard: A Modal Logic for Cantorian Subset Spaces. Hagen 1996. FernUniversität in Hagen.

Zugriffsstatistik

Gesamt

Volltextzugriffe:
Metadatenansicht:

12 Monate

Volltextzugriffe:
Metadatenansicht:

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export

powered by MyCoRe